scholarly journals Fundamental Methods for the Phase Transfer of Nanoparticles

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6170
Author(s):  
Elijah Cook ◽  
Gianna Labiento ◽  
Bhanu P. S. Chauhan

The utilization of nanoparticles for a variety of applications has raised much interest in recent years as new knowledge has emerged in nanochemistry. New and diverse methods for synthesis, characterization, and application of these particles have been discovered with differing degrees of ease and reproducibility. Post-synthetic modification of nanoparticles is often a required step to facilitate their use in applications. The reaction conditions and chemical environment for the nanoparticle synthesis may not support or may conflict with further reactions. For this reason, it is beneficial to have phase transfer methods for nanoparticles to allow for their dispersion in a variety of solvents. Phase transfer methods are often limited in the types and sizes of particles that can be effectively dispersed in an immiscible solvent. Currently, general transfer methods for a wide variety of nanoparticles have not been identified. New routes for phase transfer allow for utilization of a larger range of particles in applications which were previously limited by solubility and reactivity issues. In this work, we will describe the fundamental methods for the phase transfer of metallic nanoparticles. We will look at the major problems and pitfalls of these methods. The applications of phase transfer will also be reviewed, mainly focusing on catalysis and drug delivery.

Author(s):  
Anikate Sood ◽  
Shweta Agarwal

Nanotechnology is the most sought field in biomedical research. Metallic nanoparticles have wide applications in the medical field and have gained the attention of various researchers for advanced research for their application in pharmaceutical field. A variety of metallic nanoparticles like gold, silver, platinum, palladium, copper and zinc have been developed so far. There are different methods to synthesize metallic nanoparticles like chemical, physical, and green synthesis methods. Chemical and physical approaches suffer from certain drawbacks whereas green synthesis is emerging as a nontoxic and eco-friendly approach in production of metallic nanoparticles. Green synthesis is further divided into different approaches like synthesis via bacteria, fungi, algae, and plants. These approaches have their own advantages and disadvantages. In this article, we have described various metallic nanoparticles, different modes of green synthesis and brief description about different metabolites present in plant that act as reducing agents in green synthesis of metallic nanoparticles. 


1981 ◽  
Vol 46 (3) ◽  
pp. 693-700 ◽  
Author(s):  
Milan Strašák ◽  
Jaroslav Majer

The kinetics of oxidation of alkenes by thallic sulphate in aqueous solutions, involving the two reaction steps-the hydroxythallation and the dethallation - was studied, and the effect of salts on the kinetics was examined; this made it possible to specify more precisely the reaction mechanism and to suggest a qualitative model of the reaction coordinate. It was found that in homogeneous as well as in heterogeneous reaction conditions, the reaction can be accelerated appreciably by adding tetraalkylammonium salts. These salts not only operate as catalysts of the phase transfer, but also exert a significant kinetic effect, which can be explained with a simplification in terms of a stabilization of the transition state of the reaction.


2019 ◽  
Vol 8 (3) ◽  
pp. 176-176 ◽  
Author(s):  
Mahfoozur Rahman ◽  
Amit K. Nayak ◽  
Sarwar Beg ◽  
M. Saquib Hasnain

Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4354 ◽  
Author(s):  
Ema Burlacu ◽  
Corneliu Tanase ◽  
Năstaca-Alina Coman ◽  
Lavinia Berta

Nanoparticles are intensely studied because of their importance in diverse fields of biotechnology, especially in medicine. This paper highlights that waste bark can be a cheap source of biocompounds, with high recovery and functionalization potential in nanoparticle synthesis. Due to their biocompatibility and activity as antioxidant, antimicrobial, and anticancer agents, the green synthesis of metallic nanoparticles is of great importance. This review aims to bring together the diversity of synthesized metallic nanoparticles mediated by bark extracts obtained from different woody vascular plants, the phytoconstituents responsible for the reduction of metal salts, and the activity of metallic nanoparticles as diverse agents in combating the microbial, oxidant, and cancer activity. The literature data highlight the fact that metallic nanoparticles obtained from natural compounds are proven reducing agents with multiple activities. Thus, the activity of natural components in environmental protection and human health is confirmed.


2019 ◽  
Vol 32 (2) ◽  
Author(s):  
Pranali J. Buch ◽  
Yunrong Chai ◽  
Edgar D. Goluch

SUMMARY This review provides a comprehensive summary of issues associated with treating polyclonal bacterial biofilms in chronic diabetic wounds. We use this as a foundation and discuss the alternatives to conventional antibiotics and the emerging need for suitable drug delivery systems. In recent years, extraordinary advances have been made in the field of nanoparticle synthesis and packaging. However, these systems have not been incorporated into the clinic for treatments other than for cancer or severe genetic diseases. We present a unifying perspective on how the field is evolving and the need for an early amalgamation of engineering principles and a biological understanding of underlying phenomena in order to develop a therapy that is translatable to the clinic in a shorter time.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Katarzyna Ranoszek-Soliwoda ◽  
Maria Girleanu ◽  
Beata Tkacz-Szczęsna ◽  
Marcin Rosowski ◽  
Grzegorz Celichowski ◽  
...  

In electronic devices based on hybrid materials such as nonvolatile memory elements (NVMEs), it is essential to control precisely the dispersion of metallic nanoparticles (NPs) in an insulating polymer matrix such as polystyrene in order to control the functionality of the device. In this work the incorporation of AuNPs in polystyrene films is controlled by tuning the surface functionalization of the metallic nanoparticles via ligand exchange. Two ligands with different structures were used for functionalization: 1-decanethiol and thiol-terminated polystyrene. This paper presents a versatile method for the modification of gold nanoparticles (AuNPs) with thiol-terminated polystyrene ligands via phase transfer process. An organic colloid of AuNPs (5±1 nm diameter) is obtained by the phase transfer process (from water to toluene) that allows exchanging the ligand adsorbed on AuNPs surface (hydrophilic citrate/tannic acid to hydrophobic thiols). The stability, size distribution, and precise location of modified AuNPs in the polymer matrix are obtained from UV-Vis spectroscopy, dynamic light scattering (DLS), and electron tomography. TEM tomographic 3D imaging demonstrates that the modification of AuNPs with thiol-terminated polystyrene results in homogeneous particle distribution in the polystyrene matrix compared to 1-decanethiol modified AuNPs for which a vertical phase separation with a homogeneous layer of AuNPs located at the bottom of the polymer matrix was observed.


2013 ◽  
Vol 690-693 ◽  
pp. 1061-1064 ◽  
Author(s):  
Lu Jing ◽  
Guo Qin Liu ◽  
Xin Qi Liu ◽  
Xue De Wang

In the system of heteropoly acid [π-C5H5NC16H33]3[PO4(WO3)4], H2O2 (30 %, w/w), polyethylene glycol, 1,2-dichloroethane, soybean oil under went epoxidation reaction smoothly via reaction-controlled phase transfer catalysis. Effects of the amount of interfacial active agent, H2O2, catalyst and reaction time were investigated and the optimized reaction conditions were as follows: 10 g of soybean oil, 0.3 g of [π-C5H5NC16H33]3[PO4 (WO3)4],8 ml of H2O2 (30 %, w/w), 5.0 ml of PEG, 30 g of 1,2-dichloroethane, and the reaction temperature was 65 °C and reaction time was 3.5-4.0 h. Under these optimized conditions, an epoxy value of 6.30 % and a yield of 90 % were obtained. Hence, it is an environmental-friendly and effective way to synthesize epoxidized soybean oil.


Sign in / Sign up

Export Citation Format

Share Document