scholarly journals Molecular Mechanisms of Anticancer Activity of N-Glycosides of Indolocarbazoles LCS-1208 and LCS-1269

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7329
Author(s):  
Roman G. Zenkov ◽  
Olga A. Vlasova ◽  
Varvara P. Maksimova ◽  
Timur I. Fetisov ◽  
Natalia Y. Karpechenko ◽  
...  

Novel indolocarbazole derivatives named LCS were synthesized by our research group. Two of them were selected as the most active anticancer agents in vivo. We studied the mechanisms of anticancer activity in accordance with the previously described effects of indolocarbazoles. Cytotoxicity was estimated by MTT assay. We analyzed LCS-DNA interactions by circular dichroism in cholesteric liquid crystals and fluorescent indicator displacement assay. The effect on the activity of topoisomerases I and II was studied by DNA relaxation assay. Expression of interferon signaling target genes was estimated by RT-PCR. Chromatin remodeling was analyzed–the effect on histone H1 localization and reactivation of epigenetically silenced genes. LCS-induced change in the expression of a wide gene set was counted by means of PCR array. Our study revealed the cytotoxic activity of the compounds against 11 cancer cell lines and it was higher than in immortalized cells. Both compounds bind DNA; binding constants were estimated—LCS-1208 demonstrated higher affinity than LCS-1269; it was shown that LCS-1208 intercalates into DNA that is typical for rebeccamycin derivatives. LCS-1208 also inhibits topoisomerases I and IIα. Being a strong intercalator and topoisomerase inhibitor, LCS-1208 upregulates the expression of interferon-induced genes. In view of LCSs binding to DNA we analyzed their influence on chromatin stability and revealed that LCS-1269 displaces histone H1. Our analysis of chromatin remodeling also included a wide set of epigenetic experiments in which LCS-1269 demonstrated complex epigenetic activity. Finally, we revealed that the antitumor effect of the compounds is based not only on binding to DNA and chromatin remodeling but also on alternative mechanisms. Both compounds induce expression changes in genes involved in neoplastic transformation and target genes of the signaling pathways in cancer cells. Despite of being structurally similar, each compound has unique biological activities. The effects of LCS-1208 are associated with intercalation. The mechanisms of LCS-1269 include influence on higher levels such as chromatin remodeling and epigenetic effects.

2020 ◽  
Vol 15 (1) ◽  
pp. 2-13 ◽  
Author(s):  
Hongyu Tao ◽  
Ling Zuo ◽  
Huanli Xu ◽  
Cong Li ◽  
Gan Qiao ◽  
...  

Background: In recent years, many novel alkaloids with anticancer activity have been found in China, and some of them are promising for developing as anticancer agents. Objective: This review aims to provide a comprehensive overview of the information about alkaloid anticancer agents disclosed in Chinese patents, and discusses their potential to be developed as anticancer drugs used clinically. Methods: Anticancer alkaloids disclosed in Chinese patents in recent 5 years were presented according to their mode of actions. Their study results published on PubMed, and SciDirect databases were presented. Results: More than one hundred anticancer alkaloids were disclosed in Chinese patents and their mode of action referred to arresting cell cycle, inhibiting protein kinases, affecting DNA synthesis and p53 expression, etc. Conclusion: Many newly found alkaloids displayed potent anticancer activity both in vitro and in vivo, and some of the anticancer alkaloids acted as protein kinase inhibitors or CDK inhibitors possess the potential for developing as novel anticancer agents.


2008 ◽  
Vol 294 (2) ◽  
pp. H699-H707 ◽  
Author(s):  
Ellen Steward Pentz ◽  
Maria Luisa S. Sequeira Lopez ◽  
Magali Cordaillat ◽  
R. Ariel Gomez

The renin-angiotensin system (RAS) regulates blood pressure and fluid-electrolyte homeostasis. A key step in the RAS cascade is the regulation of renin synthesis and release by the kidney. We and others have shown that a major mechanism to control renin availability is the regulation of the number of cells capable of making renin. The kidney possesses a pool of cells, mainly in its vasculature but also in the glomeruli, capable of switching from smooth muscle to endocrine renin-producing cells when homeostasis is threatened. The molecular mechanisms governing the ability of these cells to turn the renin phenotype on and off have been very difficult to study in vivo. We, therefore, developed an in vitro model in which cells of the renin lineage are labeled with cyan fluorescent protein and cells actively making renin mRNA are labeled with yellow fluorescent protein. The model allowed us to determine that it is possible to culture cells of the renin lineage for numerous passages and that the memory to express the renin gene is maintained in culture and can be reenacted by cAMP and chromatin remodeling (histone H4 acetylation) at the cAMP-responsive element in the renin gene.


2018 ◽  
Vol 40 (6) ◽  
pp. 791-804
Author(s):  
Praveen Pandey ◽  
Deepika Singh ◽  
Mohammad Hasanain ◽  
Raghib Ashraf ◽  
Mayank Maheshwari ◽  
...  

Abstract Sphaeranthus indicus Linn. is commonly used in Indian traditional medicine for management of multiple pathological conditions. However, there are limited studies on anticancer activity of this plant and its underlying molecular mechanisms. Here, we isolated an active constituent, 7-hydroxyfrullanolide (7-HF), from the flowers of this plant, which showed promising chemotherapeutic potential. The compound was more effective in inhibiting in vitro proliferation of colon cancers cells through G2/M phase arrest than other cancer cell lines that were used in this study. Consistent with in vitro data, 7-HF caused substantial regression of tumour volume in a syngeneic mouse model of colon cancer. The molecule triggered extrinsic apoptotic pathway, which was evident as upregulation of DR4 and DR5 expression as well as induction of their downstream effector molecules (FADD, Caspase-8). Concurrent activation of intrinsic pathway was demonstrated with loss of ΔΨm to release pro-apoptotic cytochrome c from mitochondria and activation of downstream caspase cascades (Caspase -9, -3). Loss of p53 resulted in decreased sensitivity of cells towards pro-apoptotic effect of 7-HF with increased number of viable cells indicating p53-dependent arrest of cancer cell growth. This notion was further supported with 7-HF-mediated elevation of endogenous p53 level, decreased expression of MDM2 and transcriptional upregulation of p53 target genes in apoptotic pathway. However, 7-HF was equally effective in preventing progression of HCT116 p53+/+ and p53−/− cell derived xenografts in nude mice, which suggests that differences in p53 status may not influence its in vivo efficacy. Taken together, our results support 7-HF as a potential chemotherapeutic agent and provided a new mechanistic insight into its anticancer activity.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5302
Author(s):  
Lili Qin ◽  
Tianfeng Lu ◽  
Yao Qin ◽  
Yiwei He ◽  
Ningxin Cui ◽  
...  

Resveratrol (RSV) is a natural flavonoid polyphenol compound extracted from the plants which shows various biological activities. However, the clinical application of RSV is limited by its poor aqueous solubility, rapid metabolism and poor bioavailability. In this study, resveratrol-loaded solid lipid nanoparticles (RSV- SLNs) was design as a nano-antioxidant against the physical fatigue. The resultant RSV-SLNs were characterized by photon correlation spectroscopy (PCS), transmission electron micrographs (TEM), zeta potential, differential scanning calorimetry (DSC) and Raman spectroscopy pattern. Furthermore, the in vivo anti-fatigue effect assays showed that RSV-SLNs prolonged the mice exhausted time and running distance. The biochemical parameters of blood related to fatigue suggested that RSV-SLNs have potential applications to improve the antioxidant defense of the mice after extensive exercise and confer anti-fatigue capability. Furthermore, the molecular mechanisms of antioxidant by RSV-SLNs supplementation was investigated through the analysis of silent information regulator 2 homolog 1 (SIRT1) protein expression, which demonstrated that it could downregulate the expression of SIRT1 and increase autophagy markers, microtubule-associated protein 1 light chain 3-II (LC3-II) and sequestosome-1 (SQSTM1/p62). These results reveal that the RSV-SLNs may have great potential used as a novel anti-fatigue sports nutritional supplement.


2020 ◽  
Vol 12 (1) ◽  
pp. 19-35 ◽  
Author(s):  
Dimitrios Trafalis ◽  
Panagiotis Dalezis ◽  
Elena Geromichalou ◽  
Sofia Sagredou ◽  
Eleni Sflakidou ◽  
...  

Aim: Steroidal prodrugs of nitrogen mustards such as estramustine and prednimustine have proven effective anticancer agents in clinical use since the 1970s. In this work, we aimed to develop steroidal prodrugs of the novel nitrogen mustard POPAM-NH2. POPAM-NH2 is a melphalan analogue that was coupled with three different steroidal lactams. Methodology: The new conjugates were preclinically tested for anticancer activity against nine human and one rodent cancer experimental models, in vitro and in vivo. Results & conclusion: All the steroidal alkylators showed high antitumor activity, in vitro and in vivo, in the experimental systems tested. Moreover, these hybrid compounds showed by far superior anticancer activity compared with the alkylating agents, melphalan and POPAM-NH2.


2007 ◽  
Vol 97 (05) ◽  
pp. 774-787 ◽  
Author(s):  
Norbert Weissmann ◽  
Friedrich Grimminger ◽  
Werner Seeger ◽  
Frank Rose ◽  
Jörg Hänze

SummaryHypoxia-inducible factor (HIF) is an oxygen-dependent transcription factor that activates a diverse set of target genes, the products of which are involved in adaptive processes to hypoxia. Employing genetic manipulation of HIF expression, in-vivo and cellular studies have focused on HIF as a crucial factor affecting hypoxia-induced vascular remodeling.Vascular remodeling comprises processes which establish and improve blood vessel supply such as vasculogenesis, angiogenesis and arteriogenesis. These processes are observed during ontogenesis, tumor progression, ischemic disease or physical training. Furthermore, under hypoxic conditions, a pulmonary-specific type of vascular remodeling called pulmonary arterial remodeling occurs that is characterized by thickening of the vessel wall with a concomitant reduction in the vessel lumen area, thereby limiting blood flow.This response results in pulmonary hypertension with right ventricular hypertrophy, a lethal disease. In this review, we summarize and discuss mechanisms by which HIF interferes with the different vascular remodeling processes.


2002 ◽  
Vol 22 (18) ◽  
pp. 6471-6479 ◽  
Author(s):  
Hong Liu ◽  
Hyeog Kang ◽  
Rui Liu ◽  
Xin Chen ◽  
Keji Zhao

ABSTRACT The mammalian SWI/SNF-like chromatin-remodeling BAF complex plays several important roles in controlling cell proliferation and differentiation. Interferons (IFNs) are key mediators of cellular antiviral and antiproliferative activities. In this report, we demonstrate that the BAF complex is required for the maximal induction of a subset of IFN target genes by alpha IFN (IFN-α). The BAF complex is constitutively associated with the IFITM3 promoter in vivo and facilitates the chromatin remodeling of the promoter upon IFN-α induction. Furthermore, we show that the ubiquitous transcription activator Sp1 interacts with the BAF complex in vivo and augments the BAF-mediated activation of the IFITM3 promoter. Sp1 binds constitutively to the IFITM3 promoter in the absence of the BAF complex, suggesting that it may recruit and/or stabilize the BAF complex binding to the IFITM3 promoter. Our results bring new mechanistic insights into the antiproliferative effects of the chromatin-remodeling BAF complex.


2003 ◽  
Vol 23 (19) ◽  
pp. 6750-6758 ◽  
Author(s):  
Daniel R. Buchholz ◽  
Shao-Chung Victor Hsia ◽  
Liezhen Fu ◽  
Yun-Bo Shi

ABSTRACT The total dependence of amphibian metamorphosis on thyroid hormone (T3) provides a unique vertebrate model for studying the molecular mechanism of T3 receptor (TR) function in vivo. In vitro transcription and developmental expression studies have led to a dual function model for TR in amphibian development, i.e., TRs act as transcriptional repressors in premetamorphic tadpoles and as activators during metamorphosis. We examined molecular mechanisms of TR action in T3-induced metamorphosis by using dominant-negative receptors (dnTR) ubiquitously expressed in transgenic Xenopus laevis. We showed that T3-induced activation of T3 target genes and morphological changes are blocked in dnTR transgenic animals. By using chromatin immunoprecipitation, we show that dnTR bound to target promoters, which led to retention of corepressors and continued histone deacetylation in the presence of T3. These results thus provide direct in vivo evidence for the first time for a molecular mechanism of altering gene expression by a dnTR. The correlation between dnTR-mediated gene repression and inhibition of metamorphosis also supports a key aspect of the dual function model for TR in development: during T3-induced metamorphosis, TR functions as an activator via release of corepressors and promotion of histone acetylation and gene activation.


2001 ◽  
Vol 21 (16) ◽  
pp. 5417-5425 ◽  
Author(s):  
Rabindra N. Bhattacharjee ◽  
Geoffrey C. Banks ◽  
Kevin W. Trotter ◽  
Huay-Leng Lee ◽  
Trevor K. Archer

ABSTRACT Transcriptional activation of the mouse mammary tumor virus (MMTV) promoter by ligand-bound glucocorticoid receptor (GR) is transient. Previously, we demonstrated that prolonged hormone exposure results in displacement of the transcription factor nuclear factor 1 (NF1) and the basal transcription complex from the promoter, the dephosphorylation of histone H1, and the establishment of a repressive chromatin structure. We have explored the mechanistic link between histone H1 dephosphorylation and silencing of the MMTV promoter by describing the putative kinase responsible for H1 phosphorylation. Both in vitro kinase assays and in vivo protein expression studies suggest that in hormone-treated cells the ability of cdk2 to phosphorylate histone H1 is decreased and the cdk2 inhibitory p21 protein level is increased. To address the role of cdk2 and histone H1 dephosphorylation in the silencing of the MMTV promoter, we used potent cdk2 inhibitors, Roscovitine and CVT-313, to generate an MMTV promoter which is associated predominantly with the dephosphorylated form of histone H1. Both Roscovitine and CVT-313 block phosphorylation of histone H1 and, under these conditions, the GR is unable to remodel chromatin, recruit transcription factors to the promoter, or stimulate MMTV mRNA accumulation. These results suggest a model where cdk2-directed histone H1 phosphorylation is a necessary condition to permit GR-mediated chromatin remodeling and activation of the MMTV promoter in vivo.


2020 ◽  
Author(s):  
Qiong Wang ◽  
Guanwen Wang ◽  
Lianjie Niu ◽  
Shaorong Zhao ◽  
Jianjun Li ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC), the most common primary liver cancer, rely on the formation of new blood vessel for growth and frequent intrahepatic and extrahepatic metastasis. Therefore, it is important to explore the underlying molecular mechanisms of tumor angiogenesis of HCC. Recently, microRNAs have been shown to modulate angiogenic processes by modulating the expression of critical angiogenic factors. However, the potential roles of tumor-derived exosomal microRNAs in regulating tumor angiogenesis remain to be elucidated. Methods: MiRNome sequencing was performed to uncover the miRNAs that are dysregulated in HCC patient serum-derived exosomes. Expression levels of miR-1290 in tissues and cells were determined by quantitative real-time PCR. The effect of mir-1290 on proliferation was evaluated by CCK-8 assay. The angiogenic ability of cells were determined by transwell, wound-healing, tube formation and matrigel plug assays. SMMC-7721 xenograft tumor model was established in NOD-SCID nude mice using miR-1290 and NC antagomirs to determin the angiogenic effect of mir-1290 in vivo. Target protein expression was determined by western blotting. Dual luciferase reporter assay was performed to confirm the action of miR-1290 on downstream target genes including SMEK1. Results are reported as means ± S.D. and differences were tested for significance using 2-sided Student’s t-test.Results: In this study, our miRNome sequencing demonstrated that miR-1290 was overexpressed in HCC patient serum-derived exosomes, and we found that delivery of miR-1290 into human endothelial cells enhanced their angiogenic ability. Our results further revealed that SMEK1 is a direct target of miR-1290 in endothelial cells. MiR-1290 exerted its pro-angiogenic function, at least in part, by alleviating the inhibition of VEGFR2 phosphorylation done by SMEK1. Conclusions: Collectively, our findings provide evidence that miR-1290 is overexpressed in HCC and promotes tumor angiogenesis via exosomal secretion, implicating its potential role as a therapeutic target for HCC.


Sign in / Sign up

Export Citation Format

Share Document