scholarly journals Exosomal miR-1290 promotes angiogenesis in hepatocellular carcinoma via targeting SMEK1

2020 ◽  
Author(s):  
Qiong Wang ◽  
Guanwen Wang ◽  
Lianjie Niu ◽  
Shaorong Zhao ◽  
Jianjun Li ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC), the most common primary liver cancer, rely on the formation of new blood vessel for growth and frequent intrahepatic and extrahepatic metastasis. Therefore, it is important to explore the underlying molecular mechanisms of tumor angiogenesis of HCC. Recently, microRNAs have been shown to modulate angiogenic processes by modulating the expression of critical angiogenic factors. However, the potential roles of tumor-derived exosomal microRNAs in regulating tumor angiogenesis remain to be elucidated. Methods: MiRNome sequencing was performed to uncover the miRNAs that are dysregulated in HCC patient serum-derived exosomes. Expression levels of miR-1290 in tissues and cells were determined by quantitative real-time PCR. The effect of mir-1290 on proliferation was evaluated by CCK-8 assay. The angiogenic ability of cells were determined by transwell, wound-healing, tube formation and matrigel plug assays. SMMC-7721 xenograft tumor model was established in NOD-SCID nude mice using miR-1290 and NC antagomirs to determin the angiogenic effect of mir-1290 in vivo. Target protein expression was determined by western blotting. Dual luciferase reporter assay was performed to confirm the action of miR-1290 on downstream target genes including SMEK1. Results are reported as means ± S.D. and differences were tested for significance using 2-sided Student’s t-test.Results: In this study, our miRNome sequencing demonstrated that miR-1290 was overexpressed in HCC patient serum-derived exosomes, and we found that delivery of miR-1290 into human endothelial cells enhanced their angiogenic ability. Our results further revealed that SMEK1 is a direct target of miR-1290 in endothelial cells. MiR-1290 exerted its pro-angiogenic function, at least in part, by alleviating the inhibition of VEGFR2 phosphorylation done by SMEK1. Conclusions: Collectively, our findings provide evidence that miR-1290 is overexpressed in HCC and promotes tumor angiogenesis via exosomal secretion, implicating its potential role as a therapeutic target for HCC.

2019 ◽  
Author(s):  
Qiong Wang ◽  
Guanwen Wang ◽  
Lianjie Niu ◽  
Shaorong Zhao ◽  
Jianjun Li ◽  
...  

Abstract Abstract Background: Hepatocellular carcinoma (HCC), the most common primary liver cancer, rely on the formation of new blood vessel for growth and frequent intrahepatic and extrahepatic metastasis. Therefore, it is important to explore the underlying molecular mechanisms of tumor angiogenesis of HCC. Recently, microRNAs have been shown to modulate angiogenic processes by modulating the expression of critical angiogenic factors. However, the potential roles of tumor-derived exosomal microRNAs in regulating tumor angiogenesis remain to be elucidated. Methods: MiRNome sequencing was performed to uncover the miRNAs that are dysregulated in HCC patient serum-derived exosomes. Expression levels of miR-1290 in tissues and cells were determined by quantitative real-time PCR. The effect of mir-1290 on proliferation was evaluated by CCK-8 assay. The angiogenic ability of cells were determined by transwell, wound-healing, tube formation and matrigel plug assays. SMMC-7721 xenograft tumor model was established in NOD-SCID nude mice using miR-1290 and NC antagomirs to determin the angiogenic effect of mir-1290 in vivo. Target protein expression was determined by western blotting. Dual luciferase reporter assay was performed to confirm the action of miR-1290 on downstream target genes including SMEK1. Results are reported as means ± S.D. and differences were tested for significance using 2-sided Student’s t-test. Results: In this study, our miRNome sequencing demonstrated that miR-1290 was overexpressed in HCC patient serum-derived exosomes, and we found that delivery of miR-1290 into human endothelial cells enhanced their angiogenic ability. Our results further revealed that SMEK1 is a direct target of miR-1290 in endothelial cells. MiR-1290 exerted its pro-angiogenic function, at least in part, by inhibiting the VEGFR2 signaling pathway in a SMEK1-dependent manner. Conclusions: Collectively, our findings provide evidence that miR-1290 is overexpressed in HCC and promotes tumor angiogenesis via exosomal secretion, implicating its potential role as a therapeutic target for HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qiong Wang ◽  
Guanwen Wang ◽  
Lianjie Niu ◽  
Shaorong Zhao ◽  
Jianjun Li ◽  
...  

Hepatocellular carcinoma (HCC), the most common primary liver cancer, relies on the formation of new blood vessel for growth and frequent intrahepatic and extrahepatic metastasis. Therefore, it is important to explore the underlying molecular mechanisms of tumor angiogenesis of HCC. Recently, microRNAs have been shown to modulate angiogenic processes by modulating the expression of critical angiogenic factors. However, the potential roles of tumor-derived exosomal microRNAs in regulating tumor angiogenesis remain to be elucidated. In this study, our miRNome sequencing demonstrated that miR-1290 was overexpressed in HCC patient serum-derived exosomes, and we found that delivery of miR-1290 into human endothelial cells enhanced their angiogenic ability. Our results further revealed that SMEK1 is a direct target of miR-1290 in endothelial cells. MiR-1290 exerted its proangiogenic function, at least in part, by alleviating the inhibition of VEGFR2 phosphorylation done by SMEK1. Collectively, our findings provide evidence that miR-1290 is overexpressed in HCC and promotes tumor angiogenesis via exosomal secretion, implicating its potential role as a therapeutic target for HCC.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5775
Author(s):  
Hae Hyun Hwang ◽  
Hee Jeong Jeong ◽  
Sangwu Yun ◽  
Youngro Byun ◽  
Teruo Okano ◽  
...  

Pancreatic cancers are classified based on where they occur, and are grouped into those derived from exocrine and those derived from neuroendocrine tumors, thereby experiencing different anticancer effects under medication. Therefore, it is necessary to develop anticancer drugs that can inhibit both types. To this end, we developed a heparin–taurocholate conjugate, i.e., LHT, to suppress tumor growth via its antiangiogenic activity. Here, we conducted a study to determine the anticancer efficacy of LHT on pancreatic ductal adenocarcinoma (PDAC) and pancreatic neuroendocrine tumor (PNET), in an orthotopic animal model. LHT reduced not only proliferation of cancer cells, but also attenuated the production of VEGF through ERK dephosphorylation. LHT effectively reduced the migration, invasion and tube formation of endothelial cells via dephosphorylation of VEGFR, ERK1/2, and FAK protein. Especially, these effects of LHT were much stronger on PNET (RINm cells) than PDAC (PANC1 and MIA PaCa-2 cells). Eventually, LHT reduced ~50% of the tumor weights and tumor volumes of all three cancer cells in the orthotopic model, via antiproliferation of cancer cells and antiangiogenesis of endothelial cells. Interestingly, LHT had a more dominant effect in the PNET-induced tumor model than in PDAC in vivo. Collectively, these findings demonstrated that LHT could be a potential antipancreatic cancer medication, regardless of pancreatic cancer types.


2018 ◽  
Vol 46 (2) ◽  
pp. 520-531 ◽  
Author(s):  
Yan Ding ◽  
Lanlan Shan ◽  
Wenqing Nai ◽  
Xiaojun Lin ◽  
Ling Zhou ◽  
...  

Background/Aims: The mechanistic target of rapamycin (mTOR) signaling pathway is essential for angiogenesis and embryonic development. DEP domain-containing mTOR-interacting protein (DEPTOR) is an mTOR binding protein that functions to inhibit the mTOR pathway In vitro experiments suggest that DEPTOR is crucial for vascular endothelial cell (EC) activation and angiogenic responses. However, knowledge of the effects of DEPTOR on angiogenesis in vivo is limited. This study aimed to determine the role of DEPTOR in tissue angiogenesis and to elucidate the molecular mechanisms. Methods: Cre/loxP conditional gene knockout strategy was used to delete the Deptor gene in mouse vascular ECs. The expression or distribution of cluster of differentiation 31 (CD31), vascular endothelial growth factor (VEGF) and hypoxia inducible factor-1 alpha (HIF-1α) were detected by immunohistochemical staining or western blot. Tube formation assay was used to measure angiogenesis in vitro. Results: Deptor knockdown led to increased expression of CD31, VEGF and HIF-1α in heart, liver, kidney and aorta. After treatment with rapamycin, their expression was significantly down regulated. In vitro, human umbilical vein endothelial cells (HUVECs) were transfected with DEPTOR-specific small interfering RNA (siRNA), which resulted in a significant increase in endothelial tube formation and migration rates. In contrast, DEPTOR overexpression markedly reduced the expression of CD31, VEGF and HIF-1α. Conclusions: Our findings demonstrated that deletion of the Deptor gene in vascular ECs resulted in upregulated expression of CD31 and HIF-1α, and further stimulated the expression of VEGF which promoted angiogenesis, indicating that disruption of normal angiogenic pathways may occur through hyperactivation of the mTORC1/HIF-1α/VEGF signaling pathway.


2020 ◽  
Author(s):  
Yang Chen ◽  
Huiyan Li ◽  
Chunxun Liu ◽  
Yongmei Han ◽  
Yubao Zhang ◽  
...  

Abstract BACKGROUND: Long non-coding RNAs (lncRNA) have been shown to play important roles in the development and progression of hepatocellular carcinoma (HCC). In this report, we examined the role of lncRNA LINC00645 in HCC. MATERIAL AND METHODS: Based on public databases and integrating bioinformatics analyses, the over-expression of LINC00645 in HCC tissues was detected and further validated in a cohort of liver tissues. A series of in vitro and in vivo functional experiments were executed to investigate the role of LINC00645 in the carcinogenesis and development of HCC. Comprehensive transcriptional analysis, chromatin immunoprecipitation (ChIP) assay, dual-luciferase reporter assay and western blot etc. were performed to explore the molecular mechanisms underlying the functions of LINC00645. RESULTS: LINC00645 was significantly upregulated in HCC cell lines and HCC tissues, which was correlated with poor prognosis in HCC patients. LINC00645 knockdown remarkably suppressed tumor growth in vitro and in vivo. Mechanistically, LINC00645 could competitively bind with miR-141-3p to prevent the degradation of its target gene GP73, which acts as a tumor-promoter in HCC. Furthermore, the ChIP assay showed that the transcription factor MAZ could bind to the LINC00645 promoter and increase its transcription. CONCLUSIONS: Collectively, this study demonstrated that LINC00645 plays a critical regulatory role in hepatocellular carcinoma cells and LINC00645 may serve as a potential diagnostic biomarker and therapeutic target of HCC. Thus, targeting MAZ/LINC00645/miR-141-3p/GP73 signaling axis may prevent the progression of HCC.


2021 ◽  
Author(s):  
Lu Zhang ◽  
Hongxin Cao ◽  
Guanghui Gu ◽  
Dehui Hou ◽  
Yunhao You ◽  
...  

Abstract Background: Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents. microRNAs have been found to play a vital role in tumor angiogenesis. Here, we investigated the effects of miR-199a-5p on tumor growth and angiogenesis in osteosarcoma. Furthermore, the underlying molecular mechanisms and signaling pathways were explored.Methods: The datasets were extracted from the Gene Expression Omnibus and the differentially expressed miRNAs (DEmiRNAs) were screened out by the GEO2R online platform. The potential target genes were predicted using the miRTarBase database. The predicted target genes were further analyzed by Gene Ontology and pathway enrichment analysis and a regulatory network of DEmiRNAs and their target genes was constructed. In addition, the effects of osteosarcoma cell derived exosomal miR-199a-5p on the proliferation, migration and neovascularization of HUVECs were evaluated by conducting EdU assays, Transwell experiments and tube formation assays. A dual-luciferase reporter assay was performed to detect whether VEGFA was the direct target of miR-199a-5p. Furthermore, in vivo xenograft models were established to further investigate the intrinsic role of miR-199a-5p in osteosarcoma tumorigenesis and angiogenesis. Results: A total of 149 DE-miRNAs were screened out, including 136 upregulated miRNAs and 13 downregulated miRNAs in human osteosarcoma plasma samples compared with normal plasma samples. A total of 1313 target genes of the top three upregulated and downregulated miRNAs were predicted. In the PPI network, the top 10 hub nodes with higher degrees were identified as hub genes, such as TP53 and VEGFA. By constructing the miRNA-hub gene network, we found that most of hub genes could be potentially modulated by miR-663a, miR-199a-5p and miR-223-3p. In addition, we found that the expression level of miR-199a-5p in exosomes derived from osteosarcoma cells was remarkably higher than the osteosarcoma cells, and the exosomes derived from osteosarcoma cells were transported to HUVECs. Overexpression of miR-199a-5p could significantly inhibited HUVEC proliferation, migration and neovascularization, whereas downregulation of miR-199a-5p expression exerted the opposite effect. Moreover, the in vivo results verified that overexpression of miR-199a-5p in osteosarcoma cells could suppress the growth and angiogenesis of tumors. Conclusion: Our results demonstrated that miR-199a-5p could be transported from osteosarcoma cells to HUVECs through exosomes, subsequently targeting VEGFA and inhibiting the growth and angiogenesis of osteosarcoma. Therefore, miR-199a-5p may act as a biomarker in the diagnosis and treatment of osteosarcoma.


Author(s):  
Yulang Huang ◽  
Lifang Chen ◽  
Zongming Feng ◽  
Weixin Chen ◽  
Shaodi Yan ◽  
...  

Myocardial infarction (MI) remains a leading cause of morbidity and mortality worldwide. Endothelial progenitor cell (EPC)-derived exosomes have been found to be effective in alleviating MI, while the detailed mechanisms remain unclear. The present study aimed to determine the protective effects of EPC-derived exosomal miR-1246 and miR-1290 on MI-induced injury and to explore the underlying molecular mechanisms. The exosomes were extracted from EPCs; gene expression levels were determined by quantitative real-time PCR, and protein expression levels were determined by western blot and immunofluorescence staining, respectively. The angiogenesis and proliferation of human cardiac fibroblasts (HCFs) were determined by tube formation assay and immunofluorescence staining of PKH67, respectively. Luciferase reporter, CHIP, and EMSA assays determined the interaction between miR-1246/1290 and the targeted genes (EFL5 and SP1). The protective effects of miR-1246/1290 on MI were evaluated in a rat model of MI. EPC-derived exosomes significantly upregulated miR-1246 and miR-1290 expression and promoted phenotypic changes of fibroblasts to endothelial cells, angiogenesis, and proliferation in HCFs. Exosomes from EPCs with miR-1246 or miR-1290 mimics transfection promoted phenotypic changes of fibroblasts to endothelial cells and angiogenesis in HCFs, while exosomes from EPCs with miR-1246 or miR-1290 knockdown showed opposite effects in HCFs. Mechanistically, miR-1246 and miR-1290 from EPC-derived exosomes induced upregulation of ELF5 and SP1, respectively, by targeting the promoter regions of corresponding genes. Overexpression of both ELF5 and SP1 enhanced phenotypic changes of fibroblasts to endothelial cells and angiogenesis in HCFs pretreated with exosomes from EPCs with miR-1246 or miR-1290 mimics transfection, while knockdown of both EFL5 and SP1 exerted the opposite effects in HCFs. Both ELF5 and SP1 can bind to the promoter of CD31, leading to the upregulation of CD31 in HCFs. Furthermore, in vivo animal studies showed that exosomes from EPCs with miR-1246 or miR-1290 overexpression attenuated the MI-induced cardiac injury in the rats and caused an increase in ELF5, SP1, and CD31 expression, respectively, but suppressed α-SMA expression in the cardiac tissues. In conclusion, our study revealed that miR-1246 and miR-1290 in EPC-derived exosomes enhanced in vitro and in vivo angiogenesis in MI, and these improvements may be associated with amelioration of cardiac injury and cardiac fibrosis after MI.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Teng Ma ◽  
Yueqiu Chen ◽  
Yihuan Chen ◽  
Qingyou Meng ◽  
Jiacheng Sun ◽  
...  

Background. To cure ischemic diseases, angiogenesis needs to be improved by various strategies in ischemic area. Considering that microRNA-132 (miR-132) regulates endothelial cell behavior during angiogenesis and the safe and efficacious delivery of microRNAs in vivo is rarely achieved, an ideal vehicle for miR-132 delivery could bring the promise for ischemic diseases. As a natural carrier of biological molecules, exosomes are more and more developed as an ideal vehicle for miRNA transfer. Meanwhile, mesenchymal stem cells could release large amounts of exosomes. Thus, this study aimed to investigate whether MSC-derived exosomes can be used for miR-132 delivery in the treatment of myocardial ischemia. Methods. MSC-derived exosomes were electroporated with miR-132 mimics and inhibitors. After electroporation, miR-132 exosomes were labelled with DiI and added to HUVECs. Internalization of DiI-labelled exosomes was examined by fluorescent microscopy. Expression levels of miR-132 in exosomes and HUVECs were quantified by real-time PCR. The mRNA levels of miR-132 target gene RASA1 in HUVECs were quantified by real-time PCR. Luciferase reporter assay was performed to examine the targeting relationship between miR-132 and RASA1. The effects of miR-132 exosomes on the angiogenic ability of endothelial cells were evaluated by tube formation assay. Matrigel plug assay and myocardial infarction model were used to determine whether miR-132 exosomes can promote angiogenesis in vivo. Results. miR-132 mimics were effectively electroporated and highly detected in MSC-derived exosomes. The expression level of miR-132 was high in HUVECs preincubated with miR-132 mimic-electroporated exosomes and low in HUVECs preincubated with miR-132 inhibitor-electroporated exosomes. The expression level of RASA1, miR-132 target gene, was reversely correlated with miR-132 expression in HUVECs pretreated with exosomes. Luciferase reporter assay further confirmed that RASA1 was a direct target of miR-132. Exosomes loaded with miR-132, as a vehicle for miRNA transfer, significantly increased tube formation of endothelial cells. Moreover, subcutaneous injection of HUVECs pretreated with miR-132 exosomes in nude mice significantly increased their angiogenesis capacity in vivo. In addition, transplantation of miR-132 exosomes in the ischemic hearts of mice markedly enhanced the neovascularization in the peri-infarct zone and preserved heart functions. Conclusions. The findings suggest that the export of miR-132 via MSC-derived exosomes represents a novel strategy to enhance angiogenesis in ischemic diseases.


Author(s):  
Yuanjun Lu ◽  
Yau-Tuen Chan ◽  
Hor-Yue Tan ◽  
Cheng Zhang ◽  
Wei Guo ◽  
...  

Abstract Background Drug resistance to sorafenib greatly limited the benefits of treatment in patients with hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) participate in the development of drug resistance. The key miRNA regulators related to the clinical outcome of sorafenib treatment and their molecular mechanisms remain to be identified. Methods The clinical significance of miRNA-related epigenetic changes in sorafenib-resistant HCC was evaluated by analyzing publicly available databases and in-house human HCC tissues. The biological functions of miR-23a-3p were investigated both in vitro and in vivo. Proteomics and bioinformatics analyses were conducted to identify the mechanisms that regulating miR-23a-3p. Luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were used to validate the binding relationship of miR-23a-3p and its targets. Results We found that miR-23a-3p was the most prominent miRNA in HCC, which was overexpressed in sorafenib non-responders and indicated poor survival and HCC relapse. Sorafenib-resistant cells exhibited increased miR-23a-3p transcription in an ETS Proto-Oncogene 1 (ETS1)-dependent manner. CRISPR-Cas9 knockout of miR-23a-3p improved sorafenib response in HCC cells as well as orthotopic HCC tumours. Proteomics analysis suggested that sorafenib-induced ferroptosis was the key pathway suppressed by miR-23a-3p with reduced cellular iron accumulation and lipid peroxidation. MiR-23a-3p directly targeted the 3′-untranslated regions (UTR) of ACSL4, the key positive regulator of ferroptosis. The miR-23a-3p inhibitor rescued ACSL4 expression and induced ferrotoptic cell death in sorafenib-treated HCC cells. The co-delivery of ACSL4 siRNA and miR-23a-3p inhibitor abolished sorafenib response. Conclusion Our study demonstrates that ETS1/miR-23a-3p/ACSL4 axis contributes to sorafenib resistance in HCC through regulating ferroptosis. Our findings suggest that miR-23a-3p could be a potential target to improve sorafenib responsiveness in HCC patients.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Joachim Altschmied ◽  
Nicole Büchner ◽  
Sascha Jakob ◽  
Sabrina Farrokh ◽  
Christine Goy ◽  
...  

Grainyhead-like 3 (GRHL3) is a member of the evolutionary conserved Grainyhead family of transcription factors. In humans, three isoforms are derived from differential first exon usage and alternative splicing, which differ only in their N-terminus. Isoform 2, the only variant also present in mouse, is required for endothelial cell (EC) migration and protects against apoptosis. The functions of the human specific isoforms 1 and 3, which are derived from an alternatively spliced pre-mRNA, have not yet been investigated, although all three isoforms are expressed in EC. Therefore, we have assessed their effects on EC migration and apoptosis. Overexpression of the two proteins had opposite effects on EC migration, with isoform 1 acting pro-migratory. This protein also protected EC against apoptosis in an eNOS-dependent manner, whereas isoform 3 had no effect. These opposing outcomes with respect to apoptosis EC were corroborated by isoform-specific knockdowns. With reporter assays using a GRHL3-specific luciferase reporter we demonstrated that both are active transcription factors. Microarray analyses revealed that they induce divergent target gene sets in EC. Two validated targets, Akt2 and Mxi1, which are upregulated by isoform1, are regulators of Akt1-, and thus eNOS-phosphorylation and apoptosis, which could explain the effects of this protein on these processes. In vivo, overexpression of isoform 3 in zebrafish embryos resulted in increased lethality and severe deformations, while isoform 1 had no deleterious effect. In conclusion, our data demonstrate that the splice variant derived isoforms 1 and 3 of the human transcription factor GRHL3 induce opposing effects in primary human endothelial cells and in a whole animal model, most likely through the induction of different target genes.


Sign in / Sign up

Export Citation Format

Share Document