scholarly journals Chlorin e6-Biotin Conjugates for Tumor-Targeting Photodynamic Therapy

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7342
Author(s):  
Wei Liu ◽  
Xingqun Ma ◽  
Yingying Jin ◽  
Jie Zhang ◽  
Yang Li ◽  
...  

To improve the tumor-targeting efficacy of photodynamic therapy, biotin was conjugated with chlorin e6 to develop a new tumor-targeting photosensitizer, Ce6-biotin. The Ce6-biotin had good water solubility and low aggregation. The singlet-oxygen generation rate of Ce6-biotin was slightly increased compared to Ce6. Flow cytometry and confocal laser scanning microscopy results confirmed Ce6-biotin had higher binding affinity toward biotin-receptor-positive HeLa human cervical carcinoma cells than its precursor, Ce6. Due to the BR-targeting ability of Ce6-biotin, it exhibited stronger cytotoxicity to HeLa cells upon laser irradiation. The IC50 against HeLa cells of Ce6-biotin and Ce6 were 1.28 µM and 2.31 µM, respectively. Furthermore, both Ce6-biotin and Ce6 showed minimal dark toxicity. The selectively enhanced therapeutic efficacy and low dark toxicity suggest that Ce6-biotin is a promising PS for BR-positive-tumor-targeting photodynamic therapy.

2017 ◽  
Vol 21 (02) ◽  
pp. 122-127 ◽  
Author(s):  
Yunman Zheng ◽  
Sizhe Zhu ◽  
Lijun Jiang ◽  
Fengshou Wu ◽  
Chi Huang ◽  
...  

Three azobisporphyrins (Por1, Por2 and Por3) were synthesized by coupling two molecules of (4-nitrophenyl/pyridyl) porphyrins in the presence of KOH/butanol. The structures of porphyrins were confirmed by UV, IR, NMR and mass spectra and elemental analysis. With tetraphenylporphyrin (H2TPP) as a control, the singlet oxygen (1O[Formula: see text] generation of porphyrins was evaluated through 1,3-diphenylisobenzofuran (DPBF) method. The order of ability to generate 1O2 for three azobisporphyrins was Por 1 [Formula: see text]Por 2 > Por 3[Formula: see text] H2TPP. The photocytotoxicity and sub-cellular localization of azobisporphyrins over Hela cells were studied through MTT analysis and confocal laser scanning microscope, respectively. The results indicated Por 1 and Por 2 displayed the low dark-cytotoxicity, while Por 3 induced a concentration-dependent cytotoxicity to Hela cells with the concentration of porphyrins ranging from 1 to 100 [Formula: see text] M. With the light dose at 4 J/cm2, Por 3 killed more than 60% Hela cells at 2 [Formula: see text] M, indicating a high photocytoxicity. As seen from the laser scanning confocal microscopy images, Por 3 was mainly localized in cell membrane, while Por 1 and Por 2 do not displayed significant fluorescent emission in Hela cells. These results suggest the synthesized cationic azobisporphyrin could be used as a potential therapeutic agent for photodynamic therapy of cancers.


Nano LIFE ◽  
2020 ◽  
Vol 10 (04) ◽  
pp. 2040013 ◽  
Author(s):  
Rong Liang ◽  
Yuxuan Wang ◽  
Lina Wu ◽  
Xinjiong Ni ◽  
Cheng Yang

Nanostructured lipid carrier (NLC) is a new colloidal delivery system which can effectively solve the problems of stability and transdermal delivery of active ingredients with poor water solubility and biocompatibility. Coenzyme Q10 (CoQ10), as a lipophilic antioxidant, has poor chemical stability due to unsaturated double bonds in its molecular structure, which limits its addition and application in cosmetics. In this study, CoQ10 NLC was prepared using the mixture of Caprylyl/Capryl Glycoside (APG) and quaternized chitosan (QCS). The particle size of the QCS–APG–NLC was around 250 nm. Compared to NLC stabilized by APG, QCS–APG–NLC has better storage stability under high temperature and light conditions. In vitro transdermal experiment analysis and confocal laser scanning microscopy (CLSM) observation found that QCS modification can effectively increase the penetration amount of CoQ10 in the skin. So, it is suggested that QCS modified APG–NLC can be used as an effective transdermal delivery system for lipophilic active components.


2021 ◽  
Vol 12 ◽  
Author(s):  
Liting Zhou ◽  
Yuanyuan Li ◽  
Song Gao ◽  
Haibo Yuan ◽  
Lingli Zuo ◽  
...  

Salmonella spvC gene, encoding a phosphothreonine lyase on host mitogen-activated protein kinases, facilitates systemic infection of Salmonella while the precise mechanisms remain elusive. Autophagy and pyroptosis dependent on the activation of inflammasomes, as parts of innate immune response, contribute to host defense against Salmonella infection. Recently, we reported that spvC could inhibit pyroptosis. To explore the effect of spvC on autophagy and the relationship between its function in pyroptosis and autophagy, infection models of macrophages J774A.1 and epithelial HeLa cells co-cultured with Salmonella Typhimurium wild type, spvC deletion, site-directed mutant which lacks phosphothreonine lyase activity, or complemented strain were established. The levels of LC3 turnover and Beclin 1 of J774A.1 cells were determined by western blot. Confocal laser scanning microscopy was used to visualize the autophagic flux after being transfected with mRFP-GFP-LC3 plasmid in HeLa cells. Results showed that SpvC inhibited autophagosome formation through its phosphothreonine lyase activity. Additionally, analysis of nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) and NLR with CARD domain-containing 4 (NLRC4) in J774A.1 cells indicated that spvC decreased the protein levels of NLRP3 and NLRC4, which were significantly changed by autophagy inhibitor Bafilomycin A1. Together, our observations reveal a novel mechanism of spvC in Salmonella pathogenesis and host inflammatory response via inhibiting autophagy and NLRP3 as well as NLRC4. These pathways and their subversion by diverse pathogen virulence determinants are expected to throw light on the design of anti-infective agents.


2020 ◽  
Vol 47 (1) ◽  
pp. 70-77
Author(s):  
Choa Park ◽  
Howon Park ◽  
Juhyun Lee ◽  
Hyunwoo Seo ◽  
Siyoung Lee

The present study is aimed to assess the effect of antimicrobial photodynamic therapy (aPDT) on <i>Streptococcus mutans</i> biofilm through teeth whitening light emitting diode (LED).<br/>Planktonic and dynamic biofilm state cultures of <i>S. mutans</i> were used. Erythrosine 20 μM/L was used as the photosensitizer. Irradiation was performed by exposing cultures to clinic and homecare whitening LEDs for 15 minutes. The viability was measured through Colony Forming Unit counts and confocal laser scanning microscopy.<br/>aPDT using whitening LEDs and erythrosine significantly decreased the CFU count of <i>S. mutans</i> compared to that in the control group. Dynamic biofilm group showed more resistant features to aPDT compared with planktonic state. Clinic and homecare whitening LED device showed similar antimicrobial effect.<br/>The whitening LED, which could irradiate the entire oral arch, showed a significant photodynamic effect on cariogenic <i>S. mutans</i> biofilm. aPDT mediated by erythrosine and LEDs used for teeth whitening exhibited promising antimicrobial activity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Panyong Zhu ◽  
Pin Lv ◽  
Yazhou Zhang ◽  
Rongqiang Liao ◽  
Jing Liu ◽  
...  

Cannabidiol (CBD) is one specific kind of the cannabinoid in Cannabis sativa L with a wide range of pharmacological activities. However, the poor water solubility and specificity of CBD limits its application in pharmaceutical field. For solving these problems, in this work, we successfully prepared a targeted carrier by grafting biotin (BIO) onto ethylenediamine-β-Cyclodextrin (EN-CD) in a single step to generate a functionalized supramolecule, named BIO-CD. Subsequently, an amantadine-conjugated cannabinoids (AD-CBD) was prepared and self-assembled with the BIO-CD. A series of methods were used to characterize the inclusion behavior and physicochemical properties of AD-CBD and BIO-CD. The results showed that AD-CBD entered the cavity of BIO-CD and formed a 1:1 host-guest inclusion complex. MTT assay and confocal laser scanning microscopy (CLSM) revealed that the targeting effect and anticancer activity of AD-CBD/BIO-CD inclusion complex against three human cancer cell lines were higher than BIO-CD, AD-CBD and free CBD. Moreover, the inclusion complex could release drugs under weakly acidic conditions. These results demonstrated that AD-CBD/BIO-CD inclusion complex possess excellent targeted and anticancer activity, which is hopeful to be applied in clinic as a new therapeutic approach.


1998 ◽  
Vol 66 (11) ◽  
pp. 5501-5507 ◽  
Author(s):  
Kathleen A. Taylor ◽  
Colin B. O’Connell ◽  
Paul W. Luther ◽  
Michael S. Donnenberg

ABSTRACT The EspB protein of enteropathogenic Escherichia coli(EPEC) is exported via a type III secretion apparatus. EspB is critical for signaling the host cell and for the development of the attaching and effacing lesion characteristic of EPEC infection. We used cellular fractionation and confocal laser scanning microscopy to determine the cellular location of EspB during infection of HeLa cells. Both methods indicated that EspB is targeted to the cytoplasm of infected cells. Using mutants, we found that EspB targeting to the host cell cytoplasm requires the type III secretion apparatus and the secreted proteins EspA and EspD, but not intimin. These results provide insights into the function of the type III secretion apparatus of EPEC and the functions of the Esp proteins.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 282 ◽  
Author(s):  
Lili Duse ◽  
Michael Rene Agel ◽  
Shashank Reddy Pinnapireddy ◽  
Jens Schäfer ◽  
Mohammed A. Selo ◽  
...  

Accumulation of photosensitisers in photodynamic therapy in healthy tissues is often the cause of unwanted side effects. Using nanoparticles, improved bioavailability and site-specific drug uptake can be achieved. In this study, curcumin, a natural product with anticancer properties, albeit with poor aqueous solubility, was encapsulated in biodegradable polymeric poly(lactic-co-glycolic acid) (PLGA) nanoparticles (CUR-NP). Dynamic light scattering, laser Doppler anemometry and atomic force microscopy were used to characterise the formulations. Using haemolysis, serum stability and activated partial thromboplastin time tests, the biocompatibility of CUR-NP was assessed. Particle uptake and accumulation were determined by confocal laser scanning microscopy. Therapeutic efficacy of the formulation was tested in SK-OV-3 human ovarian adenocarcinoma cells post low level LED irradiation by determining the generation of reactive oxygen species and cytotoxicity. Pharmacologic inhibitors of cellular uptake pathways were used to identify the particle uptake mechanism. CUR-NP exhibited better physicochemical properties such as stability in the presence of light and improved serum stability compared to free curcumin. In addition, the novel nanoformulation facilitated the use of higher amounts of curcumin and showed strong apoptotic effects on tumour cells.


Author(s):  
Takeshi Matsumoto ◽  
Takashi Komori ◽  
Yuta Yoshino ◽  
Tadaaki Ioroi ◽  
Tsukasa Kitahashi ◽  
...  

Abstract Purpose The clinical application of gemcitabine (GEM) is limited by its pharmacokinetic properties. The aim of this study was to characterize the stability in circulating plasma, tumor targeting, and payload release of liposome-encapsulated GEM, FF-10832. Methods Antitumor activity was assessed in xenograft mouse models of human pancreatic cancer. The pharmacokinetics of GEM and its active metabolite dFdCTP were also evaluated. Results In mice with Capan-1 tumors, the dose-normalized areas under the curve (AUCs) after FF-10832 administration in plasma and tumor were 672 and 1047 times higher, respectively, than after using unencapsulated GEM. The tumor-to-bone marrow AUC ratio of dFdCTP was approximately eight times higher after FF-10832 administration than after GEM administration. These results indicated that liposomal encapsulation produced long-term stability in circulating plasma and tumor-selective targeting of GEM. In mice with Capan-1, SUIT-2, and BxPC-3 tumors, FF-10832 had better antitumor activity and tolerability than GEM. Internalization of FF-10832 in tumor-associated macrophages (TAMs) was revealed by flow cytometry and confocal laser scanning microscopy, and GEM was efficiently released from isolated macrophages of mice treated with FF-10832. These results suggest that TAMs are one of the potential reservoirs of GEM in tumors. Conclusion This study found that FF-10832 had favorable pharmacokinetic properties. The liposomal formulation was more effective and tolerable than unencapsulated GEM in mouse xenograft tumor models. Hence, FF-10832 is a promising candidate for the treatment of pancreatic cancer.


Sign in / Sign up

Export Citation Format

Share Document