scholarly journals Three New Isoprenylated Flavones from Artocarpus chama Stem and Their Bioactivities

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 3
Author(s):  
Sukanya Dej-adisai ◽  
Kedsaraporn Parndaeng ◽  
Chatchai Wattanapiromsakul ◽  
Jae Sung Hwang

Phytochemical investigation of Artocarpus chama stem was performed by chromatographic techniques, resulting from the isolation and structure elucidation of three new compounds, namely 3′-farnesyl-apigenin (1), 3-(hydroxyprenyl) isoetin (2), and 3-prenyl-5,7,2′,5′-tetrahydroxy-4′-methoxyflavone (3), and five known compounds, namely homoeriodictyol (4), isocycloartobilo-xanthone (5), artocarpanone (6), naringenin (7), and artocarpin (8). From the screening result, A. chama extract showed a potent tyrosinase inhibitory effect. Ihe isolated compounds 1, 4 and 6 also exhibited tyrosinase inhibition with IC50 of 135.70, 52.18, and 38.78 µg/mL, respectively. Moreover, compounds 3, 4, 5, 6, and 8 showed strong activity against Staphylococcus epidermidis, S. aureus, methicillin-resistant S. aureus, and Cutibacterium acnes. This study is the first report on phytochemical investigation with new compounds and biological activities of A. chama. Skin infection can cause dark spots or hyperpigmentation. The isolated compounds that showed both anityrosinase and antimicrobial activities will be further studied in in vivo and clinical trials in order to develop treatment for hyperpigmentation, which is caused by infectious diseases by microorganisms.

1997 ◽  
Vol 273 (6) ◽  
pp. E1127-E1132 ◽  
Author(s):  
Pascal Fragner ◽  
Olivier Presset ◽  
Nicole Bernad ◽  
Jean Martinez ◽  
Claude Roze ◽  
...  

The tripeptide pyro-Glu-His-Pro-NH2[thyrotropin-releasing hormone (TRH)] was isolated from the hypothalamus as a thyrotropin-releasing factor. It has a broad spectrum of central nervous system-mediated actions, including the stimulation of exocrine pancreatic secretion. TRH is also synthesized in the endocrine pancreas and found in the systemic circulation. Enzymatic degradation of TRH in vivo produces other bioactive peptides such as cyclo(His-Pro). Because of the short half-life of TRH and the stability of cyclo(His-Pro) in vivo, we postulated that at least part of the peripheral TRH effects on the exocrine pancreatic secretion may be attributed to cyclo(His-Pro), which has been shown to have other biological activities. This study determines in parallel the peripheral effects of TRH and cyclo(His-Pro) as well as the putative contribution of other TRH-related peptides on exocrine pancreatic secretion in rats. TRH and its metabolite cyclo(His-Pro) dose dependently inhibited 2-deoxy-d-glucose (2-DG)-stimulated pancreatic secretion. TRH and all the related peptides tested had no effect on the basal and cholecystokinin-stimulated amylase release from pancreatic acinar cells in vitro. These data indicate that cyclo(His-Pro) mimics the peripheral inhibitory effect of TRH on 2-DG-stimulated exocrine pancreatic secretion. This effect is not detected on isolated pancreatic acini. Our findings provide a new biological contribution for cyclo(His-Pro) with potential experimental and clinical applications.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 129
Author(s):  
Dario Matulja ◽  
Maria Kolympadi Markovic ◽  
Gabriela Ambrožić ◽  
Sylvain Laclef ◽  
Sandra Kraljević Pavelić ◽  
...  

Gorgonian corals, which belong to the genus Eunicella, are known as natural sources of diverse compounds with unique structural characteristics and interesting bioactivities both in vitro and in vivo. This review is focused primarily on the secondary metabolites isolated from various Eunicella species. The chemical structures of 64 compounds were divided into three main groups and comprehensively presented: a) terpenoids, b) sterols, and c) alkaloids and nucleosides. The observed biological activities of depicted metabolites with an impact on cytotoxic, anti-inflammatory, and antimicrobial activities were reviewed. The most promising biological activities of certain metabolites point to potential candidates for further development in pharmaceutical, cosmetic, and other industries, and are highlighted. Total synthesis or the synthetic approaches towards the desired skeletons or natural products are also summarized.


Author(s):  
KOSARAJU LAHARI ◽  
RAJA SUNDARARAJAN

Objective: Isatins have emerged as antimicrobial agents due to their broad spectrum of in vitro and in vivo antimicrobial activities. In addition, thiazolidinone also reported to possess various biological activities particularly antimicrobial activity. Due to the importance, we planned to synthesize compounds with isatin functionality coupled with thiazolidinone as possible antitubercular and antimicrobial agents which could furnish better therapeutic results. Methods: In vitro Mycobacterium tuberculosis method and agar streak dilution test are used to estimate antitubercular and antimicrobial potency of title analogs, respectively. Minimum inhibitory concentration of entire title compounds was determined against all tested microorganism such as M. tuberculosis, four Gram-positive, three Gram-negative bacteria, and two fungi. Results: A series of new thiazolidinone substituted Schiff and Mannich bases of 5-nitroisatins were designed and synthesized by a multistep synthesis from isatin. Structures of synthesized compounds are characterized using Fourier-transform infrared, proton nuclear magnetic resonance, mass spectroscopy, and bases of elemental analysis. Mild to good antitubercular and antimicrobial activity was showed by synthesized 5-nitroisatin analogs. The relationship between the biological activity and the functional group variation of the tested compounds was discussed. Conclusion: 3-(4-(3-(4-Aminophenyl)-4-oxothiazolidin-2-yl)phenylimino)-1-((dimethyl amino)methyl)-5-nitroindolin-2-one 6 and 3-(4-(3- (2-aminophenyl)-4-oxothiazolidin-2-yl)phenylimino)-1-((dimethylamino)methyl)-5-nitroindolin-2-one 13 were found to be the most potent compounds of this series which might be extended as a novel class of antimicrobial agents.


2021 ◽  
Vol 59 (2) ◽  
Author(s):  
Essam A. Makky ◽  
Manaf AlMatar ◽  
Mahmood H. Mahmood ◽  
Ooi Wei Ting ◽  
Wong Zi Qi

Research background. Antioxidants are described as important compounds that are present at low concentrations to inhibit oxidation processes. Due to the side effects of synthetic antioxidants, research interest has increased considerably towards finding natural sources of antioxidants that can replace synthetic antioxidants. The emergence and spread of antibiotic resistance require the development of new drugs or some potential sources of novel medicine. This work aims to extract the secondary metabolites of S. cerevisiae using ethyl acetate as a solvent and to determine the antioxidant and antimicrobial activities of these extracted metabolites. Experimental approach. The antioxidant activities of the secondary metabolites of S. cerevisiae were determined using DPPH, ABTS, and FRAP assays. Furthermore, the antimicrobial potential of the ethyl acetate extract of S. cerevisiae in treating Cutibacterium acnes, Staphylococcus aureus, and Staphylococcus epidermidis was assessed. Results and conclusion. Five out of 13 of the extracted secondary metabolites were identified as antioxidants. The antioxidant activity of the S. cerevisiae extract exhibited relatively high IC50 of 455.2689 μg/mL and 294.51 μg/mL for DPPH and ABTS respectively while the FRAP value was obtained as 44.4004 μg AAE/mL. Moreover, the extracts presented a significant antibacterial activity (p<0.05) against Staphylococcus aureus and Staphylococcus epidermidis at the concentrations of 100 mg/mL and 200 mg/mL, respectively. However, no inhibitory effect was observed against Cutibacterium acnes as the extract was only effective against Cutibacterium acnes at the concentrations of 300 mg/mL and 400 mg/mL (inhibition zones ranging from 9.0±0 to 9.333±0.577) respectively (p<0.05). Staphylococcus aureus was highly sensitive to the extract, with a MIC value of 18.75 mg/mL. Novelty and scientific contribution. This report confirmed the efficacy of the secondary metabolites of S. cerevisiae as a natural source of antioxidants and antimicrobials and suggest the possibility of employing them in drugs for the treatment of infectious diseases caused by the tested microorganisms.


2010 ◽  
Vol 5 (1) ◽  
pp. 1934578X1000500
Author(s):  
Neslihan Kavalcioğrlu ◽  
Leyla Açık ◽  
Fatih Demirci ◽  
Betül Demirci ◽  
Hülya Demir ◽  
...  

Different parts of Bellis perennis were subjected to hydrodistillation and the products were subsequently analyzed by GC and GC/MS. Aqueous and methanol extracts were prepared from the aerial parts. Antioxidant [1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging, reducing activity, total antioxidant] and antimicrobial activity of the plant materials were studied. The aqueous extracts showed higher DPPH scavenging activity (85.8% at 102.5 μg/mL) than the methanol extract. Reducing power was also observed for both tested extracts, where the formation of linoleic acid peroxides was more for the aqueous extract than the methanol extract. Antimicrobial activities of all plant materials were evaluated at varying concentrations against a panel of pathogens, but without pronounced inhibitory effect.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2709
Author(s):  
Maria Antonietta Dettori ◽  
Davide Fabbri ◽  
Alessandro Dessì ◽  
Roberto Dallocchio ◽  
Paola Carta ◽  
...  

The impaired activity of tyrosinase and laccase can provoke serious concerns in the life cycles of mammals, insects and microorganisms. Investigation of inhibitors of these two enzymes may lead to the discovery of whitening agents, medicinal products, anti-browning substances and compounds for controlling harmful insects and bacteria. A small collection of novel reversible tyrosinase and laccase inhibitors with a phenylpropanoid and hydroxylated biphenyl core was prepared using naturally occurring compounds and their activity was measured by spectrophotometric and electrochemical assays. Biosensors based on tyrosinase and laccase enzymes were constructed and used to detect the type of protein-ligand interaction and half maximal inhibitory concentration (IC50). Most of the inhibitors showed an IC50 in a range of 20–423 nM for tyrosinase and 23–2619 nM for laccase. Due to the safety concerns of conventional tyrosinase and laccase inhibitors, the viability of the new compounds was assayed on PC12 cells, four of which showed a viability of roughly 80% at 40 µM. In silico studies on the crystal structure of laccase enzyme identified a hydroxylated biphenyl bearing a prenylated chain as the lead structure, which activated strong and effective interactions at the active site of the enzyme. These data were confirmed by in vivo experiments performed on the insect model Tenebrio molitur.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Neuza Mariko Aymoto Hassimotto ◽  
Vanessa Moreira ◽  
Neide Galvão do Nascimento ◽  
Pollyana Cristina Maggio de Castro Souto ◽  
Catarina Teixeira ◽  
...  

Anthocyanins are flavonoids which demonstrated biological activities inin vivoandin vitromodels. Here in the anti-inflammatory properties of an anthocyanin-enriched fraction (AF) extracted from wild mulberry and the cyanidin-3-glucoside (C3G), the most abundant anthocyanin in diet, were studied in two acute inflammation experimental models, in the peritonitis and in the paw oedema assays, both of which were induced by carrageenan (cg) in mice. In each trial, AF and C3G (4 mg/100 g/animal) were orally administered in two distinct protocols: 30 min before and 1 h after cg stimulus. The administration of both AF and C3G suppresses the paw oedema in both administration times (P<0.05). In the peritonitis, AF and C3G reduced the polymorphonuclear leukocytes (PMN) influx in the peritoneal exudates when administered 1 h after cg injection. AF was more efficient reducing the PMN when administered 30 min before cg. Both AF and C3G were found to suppress mRNA as well as protein levels of COX-2 upregulated by cg in both protocols, but the inhibitory effect on PGE2production in the peritoneal exudates was observed when administered 30 min before cg (P<0.05). Our findings suggest that AF and C3G minimize acute inflammation and they present positive contributions as dietary supplements.


2003 ◽  
Vol 47 (8) ◽  
pp. 2481-2486 ◽  
Author(s):  
Woong Sik Jang ◽  
Chong Han Kim ◽  
Kyu Nam Kim ◽  
Shin Yong Park ◽  
Joon Ha Lee ◽  
...  

ABSTRACT Halocidin is a heterodimer antimicrobial peptide previously isolated from the tunicate Halocynthia aurantium. Based on the larger monomer (18Hc) of halocidin, nine halocidin congeners, including a series of 6 peptides truncated successively from the carboxyl-terminal end of 18Hc and 3 analogs (18HcKK, K19Hc, and K19HcKK), which have lysine residues in place of two internal histidines or have a lysine added to the amino terminus of the 18Hc molecule, were prepared. Each peptide was also converted into a homodimeric version. The antimicrobial activities of halocidin congeners truncated from the C terminus were dramatically decreased, suggesting that the full length of 18Hc is required for maintaining its maximum antimicrobial activity. Dimer forms of halocidin congeners exhibited stronger antimicrobial activities than the monomer of the corresponding peptide. Four dimer peptides (di-18Hc, di-18HcKK, di-K19Hc, and di-K19HcKK) were analyzed for antimicrobial activities against 10 clinically isolated antibiotic-resistant bacteria in elevated concentrations of NaCl or MgCl2. Of the peptides studied here, di-K19Hc retained invariably strong activity against all bacteria in diverse conditions and also showed much reduced hemolytic activity against human erythrocytes.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3533
Author(s):  
Htoo Tint San ◽  
Tanawat Chaowasku ◽  
Wanwimon Mekboonsonglarp ◽  
Ratchanee Rodsiri ◽  
Boonchoo Sritularak ◽  
...  

The phytochemical investigation of Huberantha jenkinsii resulted in the isolation of two new and five known compounds. The new compounds were characterized as undescribed 8-oxoprotoberberine alkaloids and named huberanthines A and B, whereas the known compounds were identified as allantoin, oxylopinine, N-trans-feruloyl tyramine, N-trans-p-coumaroyl tyramine, and mangiferin. The structure determination was accomplished by spectroscopic methods. To evaluate therapeutic potential in diabetes and Parkinson’s disease, the isolates were subjected to assays for their α-glucosidase inhibitory activity, cellular glucose uptake stimulatory activity, and protective activity against neurotoxicity induced by 6-hydroxydopamine (6-OHDA). The results suggested that mangiferin was the most promising lead compound, demonstrating significant activity in all the test systems.


2021 ◽  
Vol 10 (1) ◽  
pp. 230-245
Author(s):  
Fahad A. Alhumaydhi ◽  
Ibrahim Khan ◽  
Abdur Rauf ◽  
Muhammad Nasimullah Qureshi ◽  
Abdullah S. M. Aljohani ◽  
...  

Abstract Currently, nanotechnology is gaining massive attention compared to conventional methods as the biosynthesis of plant-based nanoparticles is considered safe, effective, and ecofriendly. Therefore, keeping in view the importance of nanotechnology, the present study was designed to synthesize, characterize, and evaluate the biological effectiveness of saffron stigma-based gold nanoparticles (SS-AuNPs) for their in vitro and in vivo biological properties. These gold nanoparticles were characterized by UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The highest antibacterial effect was observed by the saffron extract against Escherichia coli (22 mm). SS-AuNPs significantly inhibited the activity of enzyme urease (54.98%) and CA-II (64.29%). However, the nonsignificant inhibitory effect was observed in the case of α-chymotrypsin. Maximum analgesic (84.98%) and antiinflammatory (88.98%) effects were observed for SS-AuNPs (10 mg/kg). Similarly, SS-AuNPs demonstrated a significant (P < 0.01) sedative effect at all tested doses.


Sign in / Sign up

Export Citation Format

Share Document