scholarly journals Color-Tunable Indolizine-Based Fluorophores and Fluorescent pH Sensor

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 12
Author(s):  
Taegwan Kim ◽  
Jonghoon Kim

A new fluorescent indolizine-based scaffold was developed using a straightforward synthetic scheme starting from a pyrrole ring. In this fluorescent system, an N,N-dimethylamino group in the aryl ring at the C-3 position of indolizine acted as an electron donor and played a crucial role in inducing a red shift in the emission wavelength based on the ICT process. Moreover, various electron-withdrawing groups, such as acetyl and aldehyde, were introduced at the C-7 position of indolizine, to tune and promote the red shift of the emission wavelength, resulting in a color range from blue to orange (462–580 nm). Furthermore, the ICT effect in indolizine fluorophores allowed the design and development of new fluorescent pH sensors of great potential in the field of fluorescence bioimaging and sensors.

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 42
Author(s):  
Shimrith Paul Shylendra ◽  
Wade Lonsdale ◽  
Magdalena Wajrak ◽  
Mohammad Nur-E-Alam ◽  
Kamal Alameh

In this work, a solid-state potentiometric pH sensor is designed by incorporating a thin film of Radio Frequency Magnetron Sputtered (RFMS) Titanium Nitride (TiN) working electrode and a commercial Ag|AgCl|KCl double junction reference electrode. The sensor shows a linear pH slope of −59.1 mV/pH, R2 = 0.9997, a hysteresis as low as 1.2 mV, and drift below 3.9 mV/h. In addition, the redox interference performance of TiN electrodes is compared with that of Iridium Oxide (IrO2) counterparts. Experimental results show −32 mV potential shift (E0 value) in 1 mM ascorbic acid (reducing agent) for TiN electrodes, and this is significantly lower than the −114 mV potential shift of IrO2 electrodes with sub-Nernstian sensitivity. These results are most encouraging and pave the way towards the development of miniaturized, cost-effective, and robust pH sensors for difficult matrices, such as wine and fresh orange juice.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 709 ◽  
Author(s):  
Esther Tanumihardja ◽  
Wouter Olthuis ◽  
Albert van den Berg

A ruthenium oxide (RuOx) electrode is being developed as potentiometric pH sensor for organs-on-chip applications. Open-circuit potential (OCP) of the RuOx electrode showed a response of −58.05 mV/pH, with no cross-sensitivity to potentially interfering/complexing ions (tested were lithium, sulfate, chloride, and calcium ions). Similar response was observed in complex biological medium. The electrode stored in liquid had a long-term drift of −0.8 mV/hour (corresponding to ΔpH of 0.013/hour) and response time in complex biological medium was 3.7 s. Minimum cross-sensitivity to oxygen was observed as the OCP shifted ~3 mV going from deoxygenated to oxygenated solution. This response is one magnitude lower than previously reported for metal- oxide pH sensors. Overall, the RuOx pH sensor has proven to be a suitable pH sensor for organs- on-chip applications.


2015 ◽  
Vol 146 (5) ◽  
pp. 343-356 ◽  
Author(s):  
Vladimir V. Cherny ◽  
Deri Morgan ◽  
Boris Musset ◽  
Gustavo Chaves ◽  
Susan M.E. Smith ◽  
...  

Part of the “signature sequence” that defines the voltage-gated proton channel (HV1) is a tryptophan residue adjacent to the second Arg in the S4 transmembrane helix: RxWRxxR, which is perfectly conserved in all high confidence HV1 genes. Replacing Trp207 in human HV1 (hHV1) with Ala, Ser, or Phe facilitated gating, accelerating channel opening by 100-fold, and closing by 30-fold. Mutant channels opened at more negative voltages than wild-type (WT) channels, indicating that in WT channels, Trp favors a closed state. The Arrhenius activation energy, Ea, for channel opening decreased to 22 kcal/mol from 30–38 kcal/mol for WT, confirming that Trp207 establishes the major energy barrier between closed and open hHV1. Cation–π interaction between Trp207 and Arg211 evidently latches the channel closed. Trp207 mutants lost proton selectivity at pHo >8.0. Finally, gating that depends on the transmembrane pH gradient (ΔpH-dependent gating), a universal feature of HV1 that is essential to its biological functions, was compromised. In the WT hHV1, ΔpH-dependent gating is shown to saturate above pHi or pHo 8, consistent with a single pH sensor with alternating access to internal and external solutions. However, saturation occurred independently of ΔpH, indicating the existence of distinct internal and external pH sensors. In Trp207 mutants, ΔpH-dependent gating saturated at lower pHo but not at lower pHi. That Trp207 mutation selectively alters pHo sensing further supports the existence of distinct internal and external pH sensors. Analogous mutations in HV1 from the unicellular species Karlodinium veneficum and Emiliania huxleyi produced generally similar consequences. Saturation of ΔpH-dependent gating occurred at the same pHo and pHi in HV1 of all three species, suggesting that the same or similar group(s) is involved in pH sensing. Therefore, Trp enables four characteristic properties: slow channel opening, highly temperature-dependent gating kinetics, proton selectivity, and ΔpH-dependent gating.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1904
Author(s):  
Sung-Yeob Jeong ◽  
Chan-Woo Lee ◽  
Jun-Uk Lee ◽  
Yong-Won Ma ◽  
Bo-Sung Shin

Due to the limited availability of agricultural land, pH sensing is becoming more and more important these days to produce efficient agricultural products. Therefore, to fabricate eco-friendly and disposable sensors, the black carbon, which is called biochar, is formed by irradiation of a UV pulsed laser having a wavelength of 355 nm onto wood and applying the resulting material as a pH sensor. The surfaces of three types of wood (beech, cork oak, and ash) were converted to the graphitic structure after UV laser irradiation; their morphologies were investigated. In addition, since the content of lignin, an organic polymer, is different for each wood, optimal laser irradiation conditions (laser fluence) needed to form these woods into pH sensors were considered. Depending on the degree of oil-like material generated after laser irradiation, a disposable pH sensor that can be used from one to three times is fabricated; due to the environmental characteristics of wood and biochar, the sensor shows high availability in that it can be easily discarded after use on agricultural land. After that, it can be used as filter in soil. Our wood-based pH sensor sensitively measures sequential changes from pH 4 to pH 10 and shows a very linear change of △R/R, indicating its potential for use in agriculture.


Coatings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 251
Author(s):  
Chih-Chiang Yang ◽  
Kuan-Yu Chen ◽  
Yan-Kuin Su

In this study, pH sensors were successfully fabricated on a fluorine-doped tin oxide substrate and grown via hydrothermal methods for 8 h for pH sensing characteristics. The morphology was obtained by high-resolution scanning electron microscopy and showed randomly oriented flower-like nanostructures. The TiO2 nanoflower pH sensors were measured over a pH range of 2–12. Results showed a high sensitivity of the TiO2 nano-flowers pH sensor, 2.7 (μA)1/2/pH, and a linear relationship between IDS and pH (regression of 0.9991). The relationship between voltage reference and pH displayed a sensitivity of a 46 mV/pH and a linear regression of 0.9989. The experimental result indicated that a flower-like TiO2 nanostructure extended gate field effect transistor (EGFET) pH sensor effectively detected the pH value.


2011 ◽  
Vol 1303 ◽  
Author(s):  
Sun Choi ◽  
Albert P. Pisano

ABSTRACTWe report simple and effective methods to develop long-term, stable silicon nanowire-based pH sensors and systematic studies of the performance of the developed sensors. In this work, we fabricate silicon nanowire pH sensors based on top-down fabrication processes such as E-beam lithography and conventional photolithography. In order to improve the stability of the sensor performance, the sensors are coated with a passivation layer (silicon nitride) for effective electrical insulation and ion-blocking. The stability, the pH sensitivity, and the repeatability of the sensor response are critically analyzed with regard to the physics of sensing interface between sample liquid and the sensing surface. The studies verify that the sensor with a passivation layer over critical thickness show long-term, stable sensor response without long-term drift. The studies also show the detection of pH level with silicon nanowire sensors is repeatable only after proper rinsing of sensor surfaces and there exists trade-off between the stability and the pH sensitivity of sensor response.


2015 ◽  
Vol 3 (21) ◽  
pp. 5516-5523 ◽  
Author(s):  
Jian Chen ◽  
Yan-gai Liu ◽  
Lefu Mei ◽  
Ziyao Wang ◽  
Minghao Fang ◽  
...  

A series of Eu2+- and Mn2+-coactivated KMg4(PO4)3phosphors were prepared by conventional high temperature solid-state reactions. Their luminescence properties, emission red shifts and the energy transfer between Eu2+and Mn2+were investigated and the related mechanisms were discussed in detail.


2007 ◽  
Vol 35 (5) ◽  
pp. 1092-1099 ◽  
Author(s):  
V. Marshansky

V-ATPase (vesicular H+-ATPase)-driven intravesicular acidification is crucial for vesicular trafficking. Defects in vesicular acidification and trafficking have recently been recognized as essential determinants of various human diseases. An important role of endosomal acidification in receptor–ligand dissociation and in activation of lysosomal hydrolytic enzymes is well established. However, the molecular mechanisms by which luminal pH information is transmitted to the cytosolic small GTPases that control trafficking events such as budding, coat formation and fusion are unknown. Here, we discuss our recent discovery that endosomal V-ATPase is a pH-sensor regulating the degradative pathway. According to our model, V-ATPase is responsible for: (i) the generation of a pH gradient between vesicular membranes; (ii) sensing of intravesicular pH; and (iii) transmitting this information to the cytosolic side of the membrane. We also propose the hypothetical molecular mechanism involved in function of the V-ATPase a2-subunit as a putative pH-sensor. Based on extensive experimental evidence on the crucial role of histidine residues in the function of PSPs (pH-sensing proteins) in eukaryotic cells, we hypothesize that pH-sensitive histidine residues within the intra-endosomal loops and/or C-terminal luminal tail of the a2-subunit could also be involved in the pH-sensing function of V-ATPase. However, in order to identify putative pH-sensitive histidine residues and to test this hypothesis, it is absolutely essential that we increase our understanding of the folding and transmembrane topology of the a-subunit isoforms of V-ATPase. Thus the crucial role of intra-endosomal histidine residues in pH-dependent conformational changes of the V-ATPase a2-isoform, its interaction with cytosolic small GTPases and ultimately in its acidification-dependent regulation of the endosomal/lysosomal protein degradative pathway remain to be determined.


Sign in / Sign up

Export Citation Format

Share Document