scholarly journals Biosynthesis of Silver Chloride Nanoparticles by Rhizospheric Bacteria and Their Antibacterial Activity against Phytopathogenic Bacterium Ralstonia solanacearum

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 224
Author(s):  
Iman Sabah Abd Alamer ◽  
Ali Athafah Tomah ◽  
Temoor Ahmed ◽  
Bin Li ◽  
Jingze Zhang

Ralstonia solanacearum is the most destructive pathogen, causing bacterial wilt disease of eggplant. The present study aimed to develop green synthesis and characterization of silver chloride nanoparticles (AgCl-NPs) by using a native bacterial strain and subsequent evaluation of their antibacterial activity against R. solanacearum. Here, a total of 10 bacterial strains were selected for the biosynthesis of AgCl-NPs. Among them, the highest yield occurred in the synthesis of AgCl-NPs using a cell-free aqueous filtrate of strain IMA13. Ultrastructural observation revealed that the AgCl-NPs were spherical and oval with smooth surfaces and 5–35 nm sizes. XRD analysis studies revealed that these particles contained face-centered cubic crystallites of metallic Ag and AgCl. Moreover, FTIR analysis showed the presence of capping proteins, carbohydrates, lipids, and lipopeptide compounds and crystalline structure of AgCl-NPs. On the basis of phylogenetic analysis using a combination of six gene sequences (16S, gyrA, rpoB, purH, polC, and groEL), we identified strain IMA13 as Bacillus mojavensis. Three kinds of lipopeptide compounds, namely, bacillomycin D, iturin, and fengycin, forming cell-free supernatant produced by strain IAM13, were identified by MALDI-TOF mass spectrometry. Biogenic AgCl-NPs showed substantial antibacterial activity against R. solanacearum at a concentration of 20 µg/mL−1. Motility assays showed that the AgCl-NPs significantly inhibited the swarming and swimming motility (61.4 and 55.8%) against R. solanacearum. Moreover, SEM and TEM analysis showed that direct interaction of AgCl-NPs with bacterial cells caused rupture of cell wall and cytoplasmic membranes, as well as leakage of nucleic acid materials, which ultimately resulted in the death of R. solanacearum. Overall, these findings will help in developing a promising nanopesticide against phytopathogen plant disease management.

Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3888 ◽  
Author(s):  
Deepika Thakur ◽  
Qui Thanh Hoai Ta ◽  
Jin-Seo Noh

Three-component nanocomposites (Fe3O4/Pd/mpg-C3N4) have been systematically synthesized using a three-step solution method for the photocatalytic bacterial decontamination. The mesoporous g-C3N4 nanosheets (mpg-C3N4), which were prepared by the acid treatment, showed a great improvement in photocatalytic performance. The photoluminescence intensity of the mpg-C3N4 nanosheets was disclosed to drop about 60% from the value of normal g-C3N4 nanosheets. Decoration of mpg-C3N4 with palladium (Pd) nanoparticles led to the effective suppression of carrier recombination and the carrier migration to Fe3O4 nanoparticles. It was revealed that the three-component nanocomposites degraded 99.9% of E. coli and 99.8% of S. aureus bacterial strains within 2 h of solar light irradiation at a 100 μg/mL concentration, demonstrating their superb photocatalytic antibacterial activity. In addition, the nanocomposites could be easily separated from the bacterial cells and repeatedly used for photocatalytic bacterial degradation with good recyclability. The strong photon-induced antibacterial activity and good recyclability of the three-component nanocomposites may represent their potential as a promising antibacterial photocatalyst.


Author(s):  
Majed M. Masadeh ◽  
Karem H. Alzoubi ◽  
Sayer I. Al-azzam ◽  
Ahlam M. Al-buhairan

The mechanism of ciprofloxacin action involves interference with transcription and replication of bacterial DNA, which results in elevated oxidative stress, and bacterial cell death. Vorinostat was shown to induce oxidative DNA damage. In the current work, the possibility for interactive effect of vorinotat on ciprofloxacin-induced cytotoxicity against a number of reference bacteria was investigated. Standard bacterial strains were Escherichia coli ATCC 35218, Staphylococcus aureus ATCC29213, Pseudomonas aeruginosa ATCC 9027, Staphylococcus epidermidis ATCC 12228, Acinetobacter baumannii ATCC 17978, Proteus mirabilis ATCC 12459, Klebsiella pneumoniae ATCC 13883, methicillin-resistant Staphylococcus aureus (MRSA) (ATCC 43300), and Streptococcus pneumoniae (ATCC 25923). The antibacterial activity of ciprofloxacin with or without pretreatment of bacterial cells by vorinostat was examined using disc diffusion procedure and determination of the minimum inhibitory concentration (MIC) and zones of inhibition of bacterial growth. All tested bacterial strains showed sensitivity to ciprofloxacin. When pretreated with vorinostat, significantly larger zones of inhibition and smaller MIC values were observed in all bacterial strains compared ciprofloxacin alone. As a conclusion, current results showed the possible agonistic properties for vorinostat when it is used together with ciprofloxacin. Future research will be focus on molecular mechanisms possible for such interactive effect.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
R. Betancourt-Galindo ◽  
P. Y. Reyes-Rodriguez ◽  
B. A. Puente-Urbina ◽  
C. A. Avila-Orta ◽  
O. S. Rodríguez-Fernández ◽  
...  

Copper nanoparticles were synthesized by thermal decomposition using copper chloride, sodium oleate, and phenyl ether as solvent agents. The formation of nanoparticles was evidenced by the X-ray diffraction and transmission electron microscopy. The peaks in the XRD pattern correspond to the standard values of the face centered cubic (fcc) structure of metallic copper and no peaks of other impurity crystalline phases were detected. TEM analysis showed spherical nanoparticles with sizes in the range of 4 to 18 nm. The antibacterial properties of copper nanoparticles were evaluatedin vitroagainst strains ofStaphylococcus aureusandPseudomonas aeruginosa. The antibacterial activity of copper nanoparticles synthesized by thermal decomposition showed significant inhibitory effect against these highly multidrug-resistant bacterial strains.


2016 ◽  
Vol 11 (1) ◽  
pp. 218
Author(s):  
Yi Zheng ◽  
Yu Wang ◽  
Yuan-Hong Shang

<p class="Abstract">The objective of the present investigation was to study the antibacterial effect of seneciolactone isolated from the methanolic extract of <em>Senecio scandens</em> against five bacterial pathogens which are known to cause several gastrointestinal tract diseases. Disc diffusion assay and agar well diffusion assays were used to examine the antibacterial efficacy of this compound by measuring zones of inhibition and MIC/MBC values. Scanning electron microscopy (SEM) was involved to study the effect of this compound on cellular morphology of <em>Shigella dysenteriae</em>. Results revealed that seneciolactone exhibited moderate to potent antibacterial activity against different bacterial strains. Zones of inhibition and MIC/MBC values indicated that seneciolactone was most potent against<em> S. dysenteriae</em> followed by <em>Pseudomonas aeruginosa</em> and <em>E. coli</em>. SEM results indicated that seneciolactone induced potent damage to the cell membrane of the tested bacteria. As compared to the untreated control which exhibited normal cellular morphology, the seneciolactone treated bacterial cells revealed severe damage to the cellular membrane particularly at the higher doses.</p><p> </p>


Author(s):  
Rita de Cássia Alves ◽  
José Roberto Vieira Júnior ◽  
Tamiris Chaves Freire ◽  
Aline Souza da Fonseca ◽  
Simone Carvalho Sangi ◽  
...  

Abstract: The objective of this work was to evaluate the in vitro antibacterial activity of snake venoms and purified toxins on the phytopathogenic bacterium Ralstonia solanacearum. The evaluations were performed with 17 crude venoms (13 from Bothrops, 3 from Crotalus, and 1 from Lachesis) and seven toxins (1 from Bothrops and 6 from Crotalus). Antibacterial activity was assessed in MB1 medium containing solubilized treatments (1 μL mL-1). A total of 100 μL bacterial suspension (8.4 x 109 CFU mL-1) was used. After incubation at 28°C, the number of bacterial colonies at 24, 48, and 72 hours after inoculation was evaluated. SDS-PAGE gel at 15% was used to analyze the protein patterns of the samples, using 5 μg protein of each sample in the assay. Furthermore, the minimum inhibitory concentration (MIC) and lethal concentration (LC50) values were determined by the Probit method. Venoms and toxins were able to reduce more than 90% of R. solanacearum growth. These results were either equivalent to those of the positive control chloramphenicol or even better. While MIC values ranged from 4.0 to 271.5 μg mL-1, LC50 ranged from 28.5 μg mL-1 to 4.38 mg mL-1. Ten crude venoms (7 from Bothrops and 3 from Crotalus) and two purified toxins (gyroxin and crotamine) are promising approaches to control the phytopathogenic bacterium R. solanacearum.


2019 ◽  
Vol 7 (9) ◽  
pp. 360 ◽  
Author(s):  
Junwei Zhao ◽  
Liyuan Han ◽  
Mingying Yu ◽  
Peng Cao ◽  
Dongmei Li ◽  
...  

Ralstonia solanacearum is a major phytopathogenic bacterium that attacks many crops and other plants around the world. In this study, a novel actinomycete, designated strain NEAU-SSA 1T, which exhibited antibacterial activity against Ralstonia solanacearum, was isolated from soil collected from Mount Song and characterized using a polyphasic approach. Morphological and chemotaxonomic characteristics of the strain coincided with those of the genus Streptomyces. The 16S rRNA gene sequence analysis showed that the isolate was most closely related to Streptomyces aureoverticillatus JCM 4347T (97.9%). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain formed a cluster with Streptomyces vastus JCM4524T (97.4%), S. cinereus DSM43033T (97.2%), S. xiangluensis NEAU-LA29T (97.1%) and S. flaveus JCM3035T (97.1%). The cell wall contained LL-diaminopimelic acid and the whole-cell hydrolysates were ribose, mannose and galactose. The polar lipids were diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), hydroxy-phosphatidylethanolamine (OH-PE), phosphatidylinositol (PI), two phosphatidylinositol mannosides (PIMs) and an unidentified phospholipid (PL). The menaquinones were MK-9(H4), MK-9(H6), and MK-9(H8). The major fatty acids were iso-C17:0, C16:0 and C17:1 ω9c. The DNA G+C content was 69.9 mol %. However, multilocus sequence analysis (MLSA) based on five other house-keeping genes (atpD, gyrB, recA, rpoB, and trpB), DNA–DNA relatedness, and physiological and biochemical data showed that the strain could be distinguished from its closest relatives. Therefore, it is proposed that strain NEAU-SSA 1T should be classified as representatives of a novel species of the genus Streptomyces, for which the name Streptomyces sporangiiformans sp. nov. is proposed. The type strain is NEAU-SSA 1T (=CCTCC AA 2017028T = DSM 105692T).


1999 ◽  
Vol 65 (6) ◽  
pp. 2356-2362 ◽  
Author(s):  
Yaowei Kang ◽  
Elke Saile ◽  
Mark A. Schell ◽  
Timothy P. Denny

ABSTRACT Ralstonia solanacearum, a phytopathogenic bacterium, uses an environmentally sensitive and complex regulatory network to control expression of multiple virulence genes. Part of this network is an unusual autoregulatory system that produces and senses 3-hydroxypalmitic acid methyl ester. In culture, this autoregulatory system ensures that expression of virulence genes, such as those of the eps operon encoding biosynthesis of the acidic extracellular polysaccharide, occurs only at high cell density (>107 cells/ml). To determine if regulation follows a similar pattern within tomato plants, we first developed a quantitative immunofluorescence (QIF) method that measures the relative amount of a target protein within individual bacterial cells. ForR. solanacearum, QIF was used to determine the amount of β-galactosidase protein within wild-type cells containing a stable eps-lacZ reporter allele. When cultured cells were examined to test the method, QIF accurately detected both low and high levels of eps gene expression. QIF analysis ofR. solanacearum cells recovered from stems of infected tomato plants showed that expression of epsduring pathogenesis was similar to that in culture. These results suggest that there are no special signals or conditions within plants that override or short-circuit the regulatory processes observed inR. solanacearum in culture. Because QIF is a robust, relatively simple procedure that uses generally accessible equipment, it should be useful in many situations where gene expression in single bacterial cells must be determined.


2020 ◽  
Vol 10 (4) ◽  
pp. 93-97
Author(s):  
Anil Kumar A ◽  
Raja Sheker K ◽  
Naveen B ◽  
Abhilash G ◽  
Akila CR

Seas assets that give us a variety of characteristic items to control bacterial, contagious and viral ailment and mostly utilized for malignancy chemotherapy practically from spineless creatures, for example, bryozoans, wipes, delicate corals, coelenterates, ocean fans, ocean bunnies, molluscs and echinoderms. In the previous 30 - 40 years, marine plants and creatures have been the focal point of overall endeavours to characterize the regular results of the marine condition. Numerous marine characteristic items have been effectively exceptional to the last phases of clinical preliminaries, including dolastatin-10, a group of peptides disengaged from Indian ocean rabbit, Dollabella auricularia. Ecteinascidin-743 from mangrove tunicate Ecteinascidia turbinata, Didemnins was isolated from Caribbean tunicate Trididemnum solidum and Conopeptides from cone snails (Conus sp.), and a developing number of up-and-comers have been chosen as promising leads for expanded pre-clinical appraisals. Sea anemones possess numerous tentacles containing stinging cells or cnidocytes. The stinging cells are equipped with small organelles known as nematocysts. The two species of sea anemones namely, Heteractis magnificaandStichodactyla haddoni, were collected from Mandapam coastal waters of Ramanathapuram district, Tamilnadu, India. The Nematocyst was collected and centrifuged, and the supernatant was lyophilized and stored for further analysis. The amount of protein from Heteractis Magnifica and Stichodactyla haddoni was estimated. The crude extract has shown haemolytic activity on chicken blood and goat blood. In the antibacterial activity of the sea anemone against six bacterial strains Staphylococcus aureus, Salmonella typhii, Salmonella paratyphii, Klebsiella pneumonia, Vibrio cholerae, Pseudomonas aeruginosa. Antibacterial activity of H. Magnifica and S.haddoni was measured as the radius of the zone of inhibition.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Kavipriya K C ◽  
Sudha A P ◽  
Sujatha K ◽  
Sowmya Lakshmi K

The interest in miniaturization of particles revealed the hidden applications of metal oxides. The potential applications of the particles may vary when the size of the particle is reduced. One of the alternative routes to the conventional approach is the use of plant extract for the synthesis of metal oxides NPs. In the framework of this study, the ecofriendly MgO nanoparticles were synthesized using Acalypha Indica leaf extract,functioning as reducing and capping agent by co-precipitation method. The predecessor taken here was Magnesium Nitrate. The biologically synthesized MgO NPs were characterized by various techniques like X ray diffraction(XRD), Fourier Transform infrared spectroscopy(FTIR), Scanning electron microscope (SEM) with Energy Dispersive X-ray spectroscopy(EDX) profile and its antibacterial activity is evaluated against causative organisms. XRD studies confirmed the face centered cubic crystalline structure of MgO NPs and the average crystalline size of MgO NPs calculated using Scherer’s formula was found to be 13 nm. FTIR spectrum shows a significant Mg-O vibrational band. Purity, surface morphology and chemical composition of elements were confirmed by SEM with EDX. The SEM result shows the fine spherical morphology with the grain size range between 43nm to 62nm. Antimicrobial assay of MgO NPs was examined against gram positive and negative bacteria. Appreciated activity was observed on the Staphylococcus aureus bacterial species. In general, the renewed attempt of this facile approach gave the optimum results of multifunctional MgO NPs.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Aarth R ◽  
Sudha A P ◽  
Sujatha B ◽  
Sowmya Lakshmi K

The phytosynthesis of n-type Cadmium Oxide Nanoparticles reduces the toxicity of the substance and makes it Eco-friendly. This Eco-friendly biosynthesis of CdO NPs was synthesized for the first time from the Queen of herbs, Ocimum Sanctum (holy basil).The biosynthesized Cadmium oxide was prepared using Ocimum leaf extract as a reductant and Cadmium Chloride and hydroxide as cadmium and oxide source materials by Co- Precipitation method. Thus obtained Cadmium Oxide Nanoparticles were characterized by different techniques such as X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM),Energy dispersive X-ray spectroscopy(EDS) to study the structural and morphological properties. XRD pattern exhibited the formation of face centered cubic structure of CdO NPs with an average crystalline size of 11.5nm .The chemical bond formation of CdO NPs were confirmed by FTIR spectrum in the range of (400-4000cm-1). The SEM micrographs revealed the predominant formation of Cauliflower shape with a particle size in the range of 61-142nm. The high purity of the biosynthesized nanoparticles were confirmed by EDS analysis. Further it was tested against gram positive and gram negative bacterial strains and showed significant antibacterial activity. This biosynthetic research study opens an innovative window to progress our understanding of how CdO NPs shows resistance to different bacterial strains.


Sign in / Sign up

Export Citation Format

Share Document