scholarly journals Biochemical and Structural Analysis of a Glucose-Tolerant β-Glucosidase from the Hemicellulose-Degrading Thermoanaerobacterium saccharolyticum

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 290
Author(s):  
In Jung Kim ◽  
Uwe T. Bornscheuer ◽  
Ki Hyun Nam

β-Glucosidases (Bgls) convert cellobiose and other soluble cello-oligomers into glucose and play important roles in fundamental biological processes, providing energy sources in living organisms. Bgls are essential terminal enzymes of cellulose degradation systems and attractive targets for lignocellulose-based biotechnological applications. Characterization of novel Bgls is important for broadening our knowledge of this enzyme class and can provide insights into its further applications. In this study, we report the biochemical and structural analysis of a Bgl from the hemicellulose-degrading thermophilic anaerobe Thermoanaerobacterium saccharolyticum (TsaBgl). TsaBgl exhibited its maximum hydrolase activity on p-nitrophenyl-β-d-glucopyranoside at pH 6.0 and 55 °C. The crystal structure of TsaBgl showed a single (β/α)8 TIM-barrel fold, and a β8-α14 loop, which is located around the substrate-binding pocket entrance, showing a unique conformation compared with other structurally known Bgls. A Tris molecule inhibited enzyme activity and was bound to the active site of TsaBgl coordinated by the catalytic residues Glu163 (proton donor) and Glu351 (nucleophile). Titration experiments showed that TsaBgl belongs to the glucose-tolerant Bgl family. The gatekeeper site of TsaBgl is similar to those of other glucose-tolerant Bgls, whereas Trp323 and Leu170, which are involved in glucose tolerance, show a unique configuration. Our results therefore improve our knowledge about the Tris-mediated inhibition and glucose tolerance of Bgl family members, which is essential for their industrial application.

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 780
Author(s):  
Krystyna Makowska ◽  
Slawomir Gonkowski

Bisphenol A (BPA) contained in plastics used in the production of various everyday objects may leach from these items and contaminate food, water and air. As an endocrine disruptor, BPA negatively affects many internal organs and systems. Exposure to BPA also contributes to heart and cardiovascular system dysfunction, but many aspects connected with this activity remain unknown. Therefore, this study aimed to investigate the impact of BPA in a dose of 0.05 mg/kg body weight/day (in many countries such a dose is regarded as a tolerable daily intake–TDI dose of BPA–completely safe for living organisms) on the neurochemical characterization of nerves located in the heart wall using the immunofluorescence technique. The obtained results indicate that BPA (even in such a relatively low dose) increases the number of nerves immunoreactive to neuropeptide Y, substance P and tyrosine hydroxylase (used here as a marker of sympathetic innervation). However, BPA did not change the number of nerves immunoreactive to vesicular acetylcholine transporter (used here as a marker of cholinergic structures). These observations suggest that changes in the heart innervation may be at the root of BPA-induced circulatory disturbances, as well as arrhythmogenic and/or proinflammatory effects of this endocrine disruptor. Moreover, changes in the neurochemical characterization of nerves in the heart wall may be the first sign of exposure to BPA.


2014 ◽  
Vol 11 (03) ◽  
pp. 1343002 ◽  
Author(s):  
GIULIO MAIER ◽  
VLADIMIR BULJAK ◽  
TOMASZ GARBOWSKI ◽  
GIUSEPPE COCCHETTI ◽  
GIORGIO NOVATI

A survey is presented herein of some recent research contributions to the methodology of inverse structural analysis based on statical tests for diagnosis of possibly damaged structures and for mechanical characterization of materials in diverse industrial environments. The following issues are briefly considered: identifications of parameters in material models and of residual stresses on the basis of indentation experiments; mechanical characterization of free-foils and laminates by cruciform and compression tests and digital image correlation measurements; diagnosis, both superficially and in depth, of concrete dams, possibly affected by alkali-silica-reaction or otherwise damaged.


Biochemistry ◽  
2006 ◽  
Vol 45 (38) ◽  
pp. 11482-11490 ◽  
Author(s):  
Cheryl Ingram-Smith ◽  
Barrett I. Woods ◽  
Kerry S. Smith

2021 ◽  
Vol 77 (10) ◽  
pp. 1305-1316
Author(s):  
Yujing Chen ◽  
Haizhu Jia ◽  
Jianyu Zhang ◽  
Yakun Liang ◽  
Ruihua Liu ◽  
...  

Polyamines are important regulators in all living organisms and are implicated in essential biological processes including cell growth, differentiation and apoptosis. Pseudomonas aeruginosa possesses an spuABCDEFGHI gene cluster that is involved in the metabolism and uptake of two polyamines: spermidine and putrescine. In the proposed γ-glutamylation–putrescine metabolism pathway, SpuA hydrolyzes γ-glutamyl-γ-aminobutyrate (γ-Glu-GABA) to glutamate and γ-aminobutyric acid (GABA). In this study, crystal structures of P. aeruginosa SpuA are reported, confirming it to be a member of the class I glutamine amidotransferase (GAT) family. Activity and substrate-binding assays confirm that SpuA exhibits a preference for γ-Glu-GABA as a substrate. Structures of an inactive H221N mutant were determined with bound glutamate thioester intermediate or glutamate product, thus delineating the active site and substrate-binding pocket and elucidating the catalytic mechanism. The crystal structure of another bacterial member of the class I GAT family from Mycolicibacterium smegmatis (MsGATase) in complex with glutamine was determined for comparison and reveals a binding site for glutamine. Activity assays confirm that MsGATase has activity for glutamine as a substrate but not for γ-Glu-GABA. The work reported here provides a starting point for further investigation of polyamine metabolism in P. aeruginosa.


2015 ◽  
Vol 99 (21) ◽  
pp. 8903-8915 ◽  
Author(s):  
Fang Yang ◽  
Xiaofeng Yang ◽  
Zhe Li ◽  
Chenyu Du ◽  
Jufang Wang ◽  
...  

Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 54
Author(s):  
Joko Tri Wibowo ◽  
Matthias Y. Kellermann ◽  
Lars-Erik Petersen ◽  
Yustian R. Alfiansah ◽  
Colleen Lattyak ◽  
...  

Melanin is a widely distributed and striking dark-colored pigment produced by countless living organisms. Although a wide range of bioactivities have been recognized, there are still major constraints in using melanin for biotechnological applications such as its fragmentary known chemical structure and its insolubility in inorganic and organic solvents. In this study, a bacterial culture of Streptomyces cavourensis SV 21 produced two distinct forms of melanin: (1) a particulate, insoluble form as well as (2) a rarely observed water-soluble form. The here presented novel, acid-free purification protocol of purified particulate melanin (PPM) and purified dissolved melanin (PDM) represents the basis for an in-depth comparison of their physicochemical and biological properties, which were compared to the traditional acid-based precipitation of melanin (AM) and to a synthetic melanin standard (SM). Our data show that the differences in solubility between PDM and PPM in aqueous solutions may be a result of different adjoining cation species, since the soluble PDM polymer is largely composed of Mg2+ ions and the insoluble PPM is dominated by Ca2+ ions. Furthermore, AM shared most properties with SM, which is likely attributed to a similar, acid-based production protocol. The here presented gentler approach of purifying melanin facilitates a new perspective of an intact form of soluble and insoluble melanin that is less chemical altered and thus closer to its original biological form.


2013 ◽  
Vol 288 (16) ◽  
pp. 11013-11023 ◽  
Author(s):  
Yong Liu ◽  
Kun Qin ◽  
Geng Meng ◽  
Jinfang Zhang ◽  
Jianfang Zhou ◽  
...  

2003 ◽  
Vol 376 (1) ◽  
pp. 229-236 ◽  
Author(s):  
Dayong ZHAI ◽  
Ning KE ◽  
Haichao ZHANG ◽  
Uri LADROR ◽  
Mary JOSEPH ◽  
...  

Bcl-B protein is an anti-apoptotic member of the Bcl-2 family protein that contains all the four BH (Bcl-2 homology) domains (BH1, BH2, BH3 and BH4) and a predicted C-terminal transmembrane domain. Our previous results showed that Bcl-B binds Bax and suppresses apoptosis induced by over-expression of Bax; however, Bcl-B does not bind or suppress Bak. To explore the molecular basis for the differential binding and suppression of Bax and Bak, we studied the BH3 dimerization domains of Bax and Bak. Chimeric mutants of Bax and Bak were generated that swapped the BH3 domains of these pro-apoptotic proteins. Bcl-B associated with and blocked apoptosis induced by mutant Bak containing the BH3 domain of Bax, but not mutant Bax containing the BH3 domain of Bak. In contrast, Bcl-XL protein bound and suppressed apoptosis induction by Bax, Bak and both BH3-domain chimeras. A strong correlation between binding and apoptosis suppression was also obtained using a series of alanine substitutions spanning the length of the Bax BH3 domain to identify critical residues for Bcl-B binding. Conversely, using structure-based modelling to design mutations in the BH3-binding pocket of Bcl-B, we produced two Bcl-B mutants (Leu86→Ala and Arg96→Gln) that failed to bind Bax and that also were unable to suppress apoptosis induced by Bax over-expression. In contrast, other Bcl-B mutants that still bound Bax retained protective activity against Bax-induced cell death, thus serving as a control. We conclude that, in contrast with some other anti-apoptotic Bcl-2-family proteins, a strong correlation exists for Bcl-B between binding to pro-apoptotic multidomain Bcl-2 family proteins and functional apoptosis suppression.


Sign in / Sign up

Export Citation Format

Share Document