scholarly journals Preparation of Hollow Flower-Like Microspherical β-Bi2O3/BiOCl Heterojunction and High Photocatalytic Property for Tetracycline Hydrochloride Degradation

Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 57 ◽  
Author(s):  
Shulin Kong ◽  
Zhaohui An ◽  
Wenwen Zhang ◽  
Zhihao An ◽  
Ming Yuan ◽  
...  

Tetracycline cannot be effectively degraded in wastewater treatment. Therefore, the development of excellent photocatalysts is of significant importance for environmental protection. In this study, a β-Bi2O3/BiOCl heterojunction photocatalyst with hollow flower-like microspheres was successfully synthesized by the in-situ reaction of HCl and β-Bi2O3 hollow spheres. The prepared samples are characterized by Scanning electron microscopy, Transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, N2 physical adsorption, UV-vis diffuse reflectance spectroscopy, and Photoluminescence. Then, research on the photocatalytic performance for the degradation of tetracycline hydrochloride was conducted. The results show that the photocatalytic performance of the β-Bi2O3/BiOCl composite is significantly better than the β-Bi2O3 and BiOCl. The increase in photocatalytic activity is due to the formation of a heterojunction between β-Bi2O3 and BiOCl, which effectively promotes the separation of photogenerated electron-hole pairs. Additionally, the heterojunction nanocomposite demonstrated the outstanding photocatalytic stability after five cycles, which indicates that the material can be used for water environment purification. This paper provides assistance for studying the photocatalytic mechanism of heterojunction photocatalytic materials.

NANO ◽  
2019 ◽  
Vol 14 (06) ◽  
pp. 1950066 ◽  
Author(s):  
Xinyao Li ◽  
Jinjuan Xue ◽  
Shuaishuai Ma ◽  
Peng Xu ◽  
Chengjuan Huang ◽  
...  

A novel heterojunction photocatalyst consisting of three-dimensional (3D) flower-like MgAl LDH and acidified g-C3N4 (CN-H) was first developed by a simple facile coating method. The obtained MgAl LDH/CN-H samples were thoroughly characterized by powder X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence spectroscopy (PL), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and Brunauer–Emmett–Teller (BET) analyzer. The detailed results demonstrated that g-C3N4 could transform from a generally two-dimensional layered structure into special cavity-like structure after acid treatment. CN-H increased specific surface to expose more active reaction sites in comparison to pristine g-C3N4. MgAl LDH and CN-H with matched band gaps were tightly bonded to form heterojunction structure by strong electrostatic intercalation. The combination could obviously boost the separation of photogenerated carriers. The as-prepared MgAl LDH/CN-H exhibited high photocatalytic performance in the degrading on typical antibiotic tetracycline hydrochloride (TC[Formula: see text][Formula: see text][Formula: see text]HCl), of which degradation rate was 6.5 and even 22 times higher than that of MgAl LDH and pristine g-C3N4, respectively. The synthesis of MgAl LDH/CN-H heterojunction photocatalyst could have some positive suggestions for the rational construction of new photocatalysts and also has great application prospect in the degradation of environmental pollutants.


Catalysts ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 394 ◽  
Author(s):  
Xinling Wang ◽  
Di Zhu ◽  
Yan Zhong ◽  
Dianhui Wang ◽  
Chaohao Hu

The pyrochlore-type (Sr0.6Bi0.305)2Bi2O7 (SBO) containing Bi3+ and Bi5+ mixed valent states was first investigated as a photocatalyst in our very recent work. To further improve the photocatalytic performance, AgBr/SBO heterostructured composites were synthesized by using a deposition-precipitation method. The characterization of phase structure, morphology, microstructure, elemental composition, and optical properties of the obtained products were performed using X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM)TEM, X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic activity of samples was evaluated by degrading methylene blue under visible light illumination. AgBr/SBO composites possess high stability and significantly enhanced photocatalytic performance. The improvement of photocatalytic activity is due to the enhanced light absorption and the separation of photoinduced electrons and holes on the interface of AgBr/SBO heterostructured composites.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Yunjian Wang ◽  
Yuchan Li

The preparation of high-purity brookite TiO2 with a unique morphology is rare and difficult. Herein, high-purity brookite TiO2 hollow spheres were hydrothermally synthesized by employing titanium sulfate as the titanium source and chloroacetic acid and sodium hydroxide as the pH regulator. The structure, morphology, and optical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The results showed that the as-prepared brookite TiO2 exhibited a hollow-sphere morphology with a size of about 1.0 micrometer and showed a direct band gap of 3.13 eV. Additionally, thermal analysis in combination with infrared spectroscopy showed that the as-prepared brookite TiO2 was surface capped by water and organic molecules. Finally, the photocatalytic and photoluminescent properties of brookite TiO2 were studied.


Separations ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 25
Author(s):  
Chukwuka Bethel Anucha ◽  
Ilknur Altin ◽  
Emin Bacaksız ◽  
Tayfur Kucukomeroglu ◽  
Masho Hilawie Belay ◽  
...  

Abatement of contaminants of emerging concerns (CECs) in water sources has been widely studied employing TiO2 based heterogeneous photocatalysis. However, low quantum energy yield among other limitations of titania has led to its modification with other semiconductor materials for improved photocatalytic activity. In this work, a 0.05 wt.% CuWO4 over TiO2 was prepared as a powder composite. Each component part synthesized via the sol-gel method for TiO2, and CuWO4 by co-precipitation assisted hydrothermal method from precursor salts, underwent gentle mechanical agitation. Homogenization of the nanopowder precursors was performed by zirconia ball milling for 2 h. The final material was obtained after annealing at 500 °C for 3.5 h. Structural and morphological characterization of the synthesized material has been achieved employing X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, Brunauer–Emmett–Teller (BET) N2 adsorption–desorption analysis, Scanning electron microscopy-coupled Energy dispersive X-ray spectroscopy (SEM-EDS), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-Vis diffuse reflectance spectroscopy (UV-vis DRS) for optical characterization. The 0.05 wt.% CuWO4-TiO2 catalyst was investigated for its photocatalytic activity over carbamazepine (CBZ), achieving a degradation of almost 100% after 2 h irradiation. A comparison with pure TiO2 prepared under those same conditions was made. The effect of pH, chemical scavengers, H2O2 as well as contaminant ion effects (anions, cations), and humic acid (HA) was investigated, and their related influences on the photocatalyst efficiency towards CBZ degradation highlighted accordingly.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
N. Cruz-González ◽  
O. Calzadilla ◽  
J. Roque ◽  
F. Chalé-Lara ◽  
J. K. Olarte ◽  
...  

In the last decade, the urgent need to environmental protection has promoted the development of new materials with potential applications to remediate air and polluted water. In this work, the effect of the TiO2 thin layer over MoS2 material in photocatalytic activity is reported. We prepared different heterostructures, using a combination of electrospinning, solvothermal, and spin-coating techniques. The properties of the samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, UV-Vis diffuse reflectance spectroscopy (UV-Vis-DRS), and X-ray photoelectron spectroscopy (XPS). The adsorption and photocatalytic activity were evaluated by discoloration of rhodamine B solution. The TiO2-MoS2/TiO2 heterostructure presented three optical absorption edges at 1.3 eV, 2.28 eV, and 3.23 eV. The high adsorption capacity of MoS2 was eliminated with the addition of TiO2 thin film. The samples show high photocatalytic activity in the visible-IR light spectrum.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Huang Liu ◽  
Yanhua Zhang ◽  
Hongtao Yang ◽  
Wei Xiao ◽  
Lanlan Sun

Using the common natural cellulose substance (filter paper) and triblock copolymer (Pluronic P123) micelles as dual templates, porous titania nanotubes with enhanced photocatalytic activity have been successfully synthesized through sol-gel methods. Firstly, P123 micelles were adsorbed onto the surfaces of cellulose nanofibers of filter paper, followed by hydrolysis and condensation of tetrabutyl titanate around these micelles to form titania layer. After calcination to remove the organic templates, hierarchical titania nanotubes with pores in the walls were obtained. The sample was characterized by X-ray diffraction pattern (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption/desorption, Fourier Transform Infrared Spectroscopy (FT-IR), Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS), and X-ray photoelectron spectroscopy (XPS). As compared with commercial P25 catalyst, the porous titania nanotubes prepared by this method displayed significantly enhanced photocatalytic activity for degrading methyl orange under UV irradiation. Within 10 minutes, the porous titania nanotubes are able to degrade over 70% of the original MO, while the value for the commercial Degussa P25 is only about 33%.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 193
Author(s):  
Kamrun Nahar Fatema ◽  
Chang-Sung Lim ◽  
Yin Liu ◽  
Kwang-Youn Cho ◽  
Chong-Hun Jung ◽  
...  

We described the novel nanocomposite of silver doped ZrO2 combined graphene-based mesoporous silica (ZrO2-Ag-G-SiO2,) in bases of low-cost and self-assembly strategy. Synthesized ZrO2-Ag-G-SiO2 were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, Nitrogen adsorption-desorption isotherms, X-ray photoelectron spectroscopy (XPS), and Diffuse Reflectance Spectroscopy (DRS). The ZrO2-Ag-G-SiO2 as an enzyme-free glucose sensor active material toward coordinate electro-oxidation of glucose was considered through cyclic voltammetry in significant electrolytes, such as phosphate buffer (PBS) at pH 7.4 and commercial urine. Utilizing ZrO2-Ag-G-SiO2, glucose detecting may well be finished with effective electrocatalytic performance toward organically important concentrations with the current reaction of 9.0 × 10−3 mAcm−2 and 0.05 mmol/L at the lowest potential of +0.2 V, thus fulfilling the elemental prerequisites for glucose detecting within the urine. Likewise, the ZrO2-Ag-G-SiO2 electrode can be worked for glucose detecting within the interferometer substances (e.g., ascorbic corrosive, lactose, fructose, and starch) in urine at proper pH conditions. Our results highlight the potential usages for qualitative and quantitative electrochemical investigation of glucose through the ZrO2-Ag-G-SiO2 sensor for glucose detecting within the urine concentration.


2020 ◽  
Vol 20 (7) ◽  
pp. 4035-4046
Author(s):  
Rengasamy Dhanabal ◽  
Dhanasekaran Naveena ◽  
Sivan Velmathi ◽  
Arumugam Chandra Bose

Using a simple solution based synthesis route, hexagonal MoO3 (h-MoO3) nanorods on reduced graphene oxide (RGO) sheets were prepared. The structure and morphology of resulting RGO-MoO3 nanocomposite were characterized using X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). The optical property was studied using UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS) and photoluminescence spectroscopy (PL). The RGO-MoO3 nanocomposites were used as an electrode for supercapacitor application and photocatalyst for photodegradation of methylene blue (MB) and rhodamine B (RhB) under visible light irradiation. We demonstrated that the RGO-MoO3 electrode is capable of delivering high specific capacitance of 134 F/g at current density of 1 A/g with outstanding cyclic stability for 2000 cycles. The RGOMoO3 photocatalyst degrades 95% of MB dye within 90 min, and a considerable recyclability up to 4 cycles was observed. The quenching effect of scavengers test confirms holes are main reactive species in the photocatalytic degradation of MB. Further, the charge transfer process between RGO and MoO3 was schematically demonstrated.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2139 ◽  
Author(s):  
Chukwuka Bethel Anucha ◽  
Ilknur Altin ◽  
Zekeriya Biyiklioglu ◽  
Emin Bacaksiz ◽  
Ismail Polat ◽  
...  

ZnWO4MnPc was synthesized via a hydrothermal autoclave method with 1 wt.% manganese (iii) phthalocyanine content. The material was characterized for its structural and morphological features via X-ray diffraction (XRD) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, transmission emission microscopy (TEM), scanning electron microscopy-Energy dispersive X-ray spectroscopy (SEM-EDX), N2 adsorption–desorption at 77K, X-ray photoelectron spectroscopy (XPS), and UV-visible/diffuse reflectance spectroscopy(UV-vis/DRS). ZnWO4MnPc photocatalytic performance was tested on the degradation of bisphenol A (BPA). The ZnWO4MnPc material removed 60% of BPA after 4 h of 365 nm UV irradiation. Degradation process improved significantly to about 80% removal in the presence of added 5 mM H2O2 after 4 h irradiation. Almost 100% removal was achieved after 30 min under 450 nm visible light irradiation in the presence of same concentration of H2O2. The effect of ions and humic acid (HA) towards BPA removal was also investigated.


Catalysts ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 426 ◽  
Author(s):  
Xiaoya Yuan ◽  
Zijuan Feng ◽  
Jianjun Zhao ◽  
Jiawei Niu ◽  
Jiasen Liu ◽  
...  

Bismuth nanoparticles (BiNPs) and Zinc Oxide photocatalysts (BiNPs/ZnO) with different Bi loadings were successfully prepared via a facile chemical method. Their morphology and structure were thoroughly characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-Vis (Ultraviolet-Visible) diffuse reflectance spectroscopy (DRS), photoluminescence spectra (PL), and electrochemical impedance spectroscopy (EIS). The results showed that a modification of hexagonal wurtzite-phase ZnO nanoparticles with Bi is achievable with an intimate interfacial interaction within its composites. The performance of the photocatalytic Cr(VI) removal under visible light irradiation indicated that BiNPs/ZnO exhibited a superior removal performance to bare ZnO, Bi, and the counterpart sample prepared using a physical mixing method. The excellent performance of the BiNPs/ZnO photocatalysts could be ascribed to the synergistic effect between the considerable physical Cr (VI) adsorption and enhanced absorption intensity in the visible light region, due to the surface plasmon resonance (SPR) as well as the effective transfer and separation of the photogenerated charge carriers at the interface.


Sign in / Sign up

Export Citation Format

Share Document