scholarly journals Noble Metal Nanostructured Materials for Chemical and Biosensing Systems

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 209 ◽  
Author(s):  
Mingfei Pan ◽  
Jingying Yang ◽  
Kaixin Liu ◽  
Zongjia Yin ◽  
Tianyu Ma ◽  
...  

Nanomaterials with unique physical and chemical properties have attracted extensive attention of scientific research and will play an increasingly important role in the future development of science and technology. With the gradual deepening of research, noble metal nanomaterials have been applied in the fields of new energy materials, photoelectric information storage, and nano-enhanced catalysis due to their unique optical, electrical and catalytic properties. Nanostructured materials formed by noble metal elements (Au, Ag, etc.) exhibit remarkable photoelectric properties, good stability and low biotoxicity, which received extensive attention in chemical and biological sensing field and achieved significant research progress. In this paper, the research on the synthesis, modification and sensing application of the existing noble metal nanomaterials is reviewed in detail, which provides a theoretical guidance for further research on the functional properties of such nanostructured materials and their applications of other nanofields.

2018 ◽  
Vol 3 (12) ◽  
Author(s):  
Linlin Xu ◽  
Jun Yang

Abstract Mastery over the size/shape of nanocrystals (NCs) enables control of their properties and enhancement of their usefulness for a given application. Within the past decades, the development of wet-chemistry methods leads to the blossom of research in noble metal nanomaterials with tunable sizes and shapes. We herein would prefer to devote this chapter to introduce the solution-based methods for size and shape-controlled synthesis of ruthenium (Ru) NCs, which can be summarized into five categories: (i) Synthesis of spherical Ru NCs; (ii) synthesis of one-dimensional (1D) Ru NCs, e.g. wires and rods; (iii) synthesis of two-dimensional (2D) Ru NCs, e.g. nanoplates; (iv) synthesis of Ru NCs with hollow interiors and (v) synthesis of Ru NCs with other morphologies, e.g. chains, dendrites and branches. We aim at highlighting the synthetic approaches and growth mechanisms of these types of Ru NCs. We also introduce the detailed characterization tools for analysis of Ru NCs with different sizes/shapes. With respect to the creation of great opportunities and tremendous challenges due to the accumulation in noble metal nanomaterials, we briefly make some perspectives for the future development of Ru NCs so as to provide the readers a systematic and coherent picture of this promising field. We hope this reviewing effort can provide for technical bases for effectively designing and producing Ru NCs with enhanced physical/chemical properties. Graphical Abstract: The solution-based methods for size and shape-controlled synthesis of ruthenium nanocrystals as well as the mechanisms behind them are extensively reviewed.


2020 ◽  
Vol 29 (1) ◽  
pp. 94-106
Author(s):  
Chongyuan Hou ◽  
Yuan Yang ◽  
Yikang Yang ◽  
Kaizhong Yang ◽  
Xiao Zhang ◽  
...  

AbstractThe increase in space debris orbiting Earth is a critical problem for future space missions. Space debris removal has thus become an area of interest, and significant research progress is being made in this field. However, the exorbitant cost of space debris removal missions is a major concern for commercial space companies. We therefore propose the debris removal using electromagnetic launcher (DREL) system, a ground-based electromagnetic launch system (railgun), for space debris removal missions. The DREL system has three components: a ground-based electromagnetic launcher (GEML), suborbital vehicle (SOV), and mass of micrometer-scale dust (MSD) particles. The average cost of removing a piece of low-earth orbit space debris using DREL was found to be approximately USD 160,000. The DREL method is thus shown to be economical; the total cost to remove more than 2,000 pieces of debris in a cluster was only approximately USD 400 million, compared to the millions of dollars required to remove just one or two pieces of debris using a conventional space debris removal mission. By using DREL, the cost of entering space is negligible, thereby enabling countries to remove their space debris in an affordable manner.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1926
Author(s):  
Gaojie Li ◽  
Wenshuang Zhang ◽  
Na Luo ◽  
Zhenggang Xue ◽  
Qingmin Hu ◽  
...  

In recent years, bimetallic nanocrystals have attracted great interest from many researchers. Bimetallic nanocrystals are expected to exhibit improved physical and chemical properties due to the synergistic effect between the two metals, not just a combination of two monometallic properties. More importantly, the properties of bimetallic nanocrystals are significantly affected by their morphology, structure, and atomic arrangement. Reasonable regulation of these parameters of nanocrystals can effectively control their properties and enhance their practicality in a given application. This review summarizes some recent research progress in the controlled synthesis of shape, composition and structure, as well as some important applications of bimetallic nanocrystals. We first give a brief introduction to the development of bimetals, followed by the architectural diversity of bimetallic nanocrystals. The most commonly used and typical synthesis methods are also summarized, and the possible morphologies under different conditions are also discussed. Finally, we discuss the composition-dependent and shape-dependent properties of bimetals in terms of highlighting applications such as catalysis, energy conversion, gas sensing and bio-detection applications.


2016 ◽  
Vol 45 (1) ◽  
pp. 63-82 ◽  
Author(s):  
Zhanxi Fan ◽  
Hua Zhang

In this review, the recent progress of crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials is systematically introduced.


2016 ◽  
Vol 6 (6) ◽  
pp. 1593-1610 ◽  
Author(s):  
Yanhui Yi ◽  
Li Wang ◽  
Gang Li ◽  
Hongchen Guo

The direct synthesis of H2O2 from H2 and O2 using Pd catalyst, fuel cell and plasma methods have been reviewed systematically.


2018 ◽  
Vol 90 (1 suppl 1) ◽  
pp. 719-744 ◽  
Author(s):  
RAFAEL S. GEONMONOND ◽  
ANDERSON G.M. DA SILVA ◽  
PEDRO H.C. CAMARGO

Author(s):  
H Singh ◽  
Amy Bamrah ◽  
Sanjeev Kumar ◽  
A Deep ◽  
M Khatri ◽  
...  

Recent developments in nanotechnology and engineering have produced a plethora of nanomaterials with amazing physical/chemical properties and enhanced sensing potential for various heavy metals in the environment. Noble metal nanoparticles...


2020 ◽  
Vol 185 ◽  
pp. 04023
Author(s):  
Liqiong Han ◽  
Yifan Liu ◽  
Rongyu Li

In order to improve the electro-conductibility of new energy storage material-manganese carbonate(MnCO3) and the properties apply to supercapacitors, we produce MnCO3/CB composite at room temperature by using a simple and mild liquid phase deposition method. Using dilute HNO3 to purify and activate the CB(carbon black), then put the handled CB into NH4HCO3/MnSO4 mixed solution for liquid deposition. Observed through infrared and XPS methods, we found that - after purified by dilute HNO3, the negatively charged groups(carboxyl & quinonyl) on CB surface increase, which makes CB uneasy to reunite in water and benefits the producing of a homogeneous compound. Observed the compound under SEM:40nm diameter CB granules wrap the Lotus-shaped MnCO3 granule, and form a porous structure between MnCO3 granules. The result of electro-chemical properties indicated by galvanostatic charge-discharge tests shows that the specific capacity of MnCO3/CB composite electrode material is twice of the pure MnCO3 electrode material, while the MnCO3/CB composite has a good cycle capacitive retention ratio. As a newly discovered energy storage material, MnCO3 provides a new direction to make composite material for supercapacitor electrodes.


2011 ◽  
Vol 383-390 ◽  
pp. 7169-7174
Author(s):  
Xing Yu Cui ◽  
Ning Zhang ◽  
Pu Yu Yao ◽  
Bin Liang

Hollow micro/nanosphere materials have the especial structure, excellent physical and chemical properties, so they have the broad application prospect in some fields, such as energy conservation, environmental protection, new energy and so on. This paper summarizes the adhibition of hollow micro/nanosphere materials in energy conservation, environmental protection, new energy and so on. And this paper prospects the research area and application prospect of the hollow micro/nanosphere material.


Sign in / Sign up

Export Citation Format

Share Document