scholarly journals Development of Porous Titania Structure with Improved Photocatalytic Activity: Response Surface Modeling and Multi-Objective Optimization

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 998 ◽  
Author(s):  
Elvira Mahu ◽  
Maria Ignat ◽  
Corneliu Cojocaru ◽  
Petrisor Samoila ◽  
Cristina Coromelci ◽  
...  

Porous titania was successfully synthesized by an ultrasound-assisted sol-gel route. The synthesis process was empirically modeled and optimized using the response surface methodology (RSM). Input variables adopted for optimization dealt with the weight ratio of precursors (r) and the sonication time (t), representing the used factors in the synthesis procedure. With regard to application, the synthesized TiO2 samples were tested for the photodegradation of two water-soluble organic pollutants under UV–Vis irradiation. Optimal conditions for the efficient pollutants’ photodegradation were found to involve a precursors ratio of 3 and a sonication time of 60 min. Thus, the M5 sample prepared under the founded optimal conditions yielded the maximal removal efficiencies of 98.4% and 46.3% for the photodegradation of CR dye and 2,4-D herbicide, respectively. In addition, the photodegradation kinetics revealed the pseudo first-order rate constants, showing the photodegradation of CR (k1 = 8.86 × 10−2 min−1) by M5 sample is about 1.3-fold faster than the photodegradation of 2,4-D pesticide (k2 = 6.84 × 10−2 min−1).

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1263
Author(s):  
Elvira Mahu ◽  
Cristina Giorgiana Coromelci ◽  
Doina Lutic ◽  
Iuliean Vasile Asaftei ◽  
Liviu Sacarescu ◽  
...  

A mesoporous titania structure has been prepared using the ultrasound-assisted sol-gel technique in order to find out a way to tailor its structure. The TiO2 obtained was compared to the same version of titania but synthesized by a conventional sol-gel method with the objective of understanding the effect of ultrasound in the synthesis process. All synthesis experiments were focused on the preparation of a titania photocatalyst. Thus, the anatase photocatalytic active phase of titania was proven by X-ray diffraction. Additionally, the ultrasonation treatment proved to increase the crystallinity of titania samples, being one of the requirements to having good photocatalytic activity for titania. The influence of surfactant/titania precursor weight ratio on the structural (XRD), textural (N2-sorption measurements), morphological (TEM), surface chemistry (FTIR) and optical properties (UVDR) was investigated. It was observed that the crystallite size, specific surface area, band gap energy and even photocatalytic activity was affected by the synergism occurring between cavitation effect and the surfactant/titania precursor weight ratio. The study yielded interesting great results that could be considered for further application of ultrasound to tailor mesoporous titania features via sol-gel soft template synthesis, against conventional sol-gel process.


2019 ◽  
Vol 16 (3) ◽  
pp. 398-404 ◽  
Author(s):  
Yang Zou ◽  
Jingyi Fei ◽  
Liangzhe Chen ◽  
Qingfeng Dong ◽  
Houbin Li

Background: 3,3,7,7-tetrakis (difluoramino) octahydro-1,5-dinitro-1,5-diazocine (HNFX), as an important oxidizer in propellants, has received much attention due to its high density and energy. However, there are many difficulties that need to be solved, such as complex synthetic processes, low product yield, high cost of raw materials and complicated purification. In the synthesis of HNFX, the intermediate named 1,5-bis (p-toluenesulfonyl)-3,7-dihydroxyoctahydro-1, 5-diazocine (gem-diol), is difficult to synthesize. Methods: A simple method was used to synthesize the gem-diol. This prepared gem-diol was characterized by FT-IR, 1H NMR, melting point and mass spectrometry. In order to increase the yield of gem-diol, response surface methodology (RSM) was introduced to optimize experimental conditions. Results: After the establishment of the model, the optimal conditions of synthesis were found to be 9.33h for reaction time, 6.13wt. % for the concentration of NaOH and 1.38:1 for ratio of ECH (p-toluenesulfonamide): TCA (epichlorohydrin). Under the optimal conditions, the experimental value and the predicted value of yield were 22.18% and 22.92%, respectively. Conclusion: 1,5-bis (p-toluenesulfonyl)-3,7-dihydroxyoctahydro-1,5-diazocine (gem-diol) can be synthesized using the low cost of chemical materials, including p-toluenesulfonamide, epichlorohydrin, sodium hydroxide and ethanol. Response surface methodology (RSM) is an effective method to optimize the synthesis process, thereby improving the yield of gem-diol.


2011 ◽  
Vol 396-398 ◽  
pp. 1222-1227 ◽  
Author(s):  
Quan Yi Wang ◽  
Kai Feng Du ◽  
Chun Mei Jia ◽  
Xue Li ◽  
Shun Yao ◽  
...  

Linoleic acid (LA) was extracted and purified from Idesia polycarpa Maxim.var. vestita Diels (IPMVVD) oil by urea adduction fractionation, and the response surface methodology (RSM) was successfully employed to optimize the process. The optimal conditions for purification of LA from mixed fatty acids by urea adduction fractionation were as follows: a weight ratio of 4.4:1.0:1.0 (w/w/w) of methanol/urea/mixed fatty acids, a temperature of -5°C and a time of 24.6 h, respectively. Under these conditions the experimental LA yield (48.65%) agreed with the predicted value and the purity of LA was 98.74%.


2021 ◽  
Vol 09 ◽  
Author(s):  
Ozra Tabasi ◽  
Mahdi Roohi Razlighi ◽  
Mohammad Ali Darbandi

Background: Ferric carboxymaltose (FCM) formulation consists of iron–carbohydrate nanoparticles that iron– oxyhydroxide as a core is covered by carbohydrate shell. The present work provides an improved synthesis process of FCM as an intravenous iron active pharmaceutical ingredient. Methods: Water soluble FCM complex was prepared from the reaction of ferric hydroxide precipitation with an aqueous solution of oxidized maltodextrin (MD) at optimum temperature and pH conditions. A systematic approach was followed to obtain the optimal weight ratio of the maltodextrin/ferric chloride for FCM synthesis process with suitable-sized nanoparticles. Physical characterization of new synthesized ferric carboxymaltose (FCM-NP) was performed and established its equivalency with the reference product (Ferinject). Results: The size distribution of the whole nanoparticles determined by dynamic light scattering (DLS) was in the range of 15-40 nm with the average particle size 26 ± 6.6 and 25.8 ± 4.9 for FCM-NP and Ferinject, respectively. X-ray diffraction (XRD) results of FCM-NP and Ferinject indicated the Akaganeite structure of iron-oxyhydroxide. The iron content of particles (cores) measured by Atomic absorption spectroscopy (AAS) was almost equal for two formulations. The Fourier transform infrared (FTIR) spectra of Ferinject and FCM-NP were approximately similar. Conclusion: Various analytical methods including FTIR spectroscopy, XRD analysis, DLS technique, TEM, and AAS were employed. It was observed that the specifications of FCM-NP obtained by these analyses, were almost identical to those of Ferinject. Accordingly, the two formulations were considered comparable.


2022 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Nataliia Hes ◽  
Artur Mylin ◽  
Svitlana Prudius

Catalytic conversion of fructose to levulinic and formic acids over tin-containing superacid (H0 = −14.52) mixed oxide was studied. Mesoporous ZrO2–SiO2–SnO2 (Zr:Si:Sn = 1:2:0.4) was synthesized by the sol–gel method. The fructose transformation was carried out in a rotated autoclave at 160–190 °C for 1–5 h using a 20 wt.% aqueous solution. The results showed that doping ZrO2–SiO2 samples with Sn4+ ions improved both fructose conversion and selectivity toward levulinic and formic acids. Under optimal conditions of 180 °C, 3.5 h and fructose to catalyst weight ratio 20:1, levulinic and formic acids yields were 80% and 90%, respectively, at complete fructose conversion. At this, humic substances formed in the quantity of 10 wt.% based on the target products.


Author(s):  
Abed Saad ◽  
Nour Abdurahman ◽  
Rosli Mohd Yunus

: In this study, the Sany-glass test was used to evaluate the performance of a new surfactant prepared from corn oil as a demulsifier for crude oil emulsions. Central composite design (CCD), based on the response surface methodology (RSM), was used to investigate the effect of four variables, including demulsifier dosage, water content, temperature, and pH, on the efficiency of water removal from the emulsion. As well, analysis of variance was applied to examine the precision of the CCD mathematical model. The results indicate that demulsifier dose and emulsion pH are two significant parameters determining demulsification. The maximum separation efficiency of 96% was attained at an alkaline pH and with 3500 ppm demulsifier. According to the RSM analysis, the optimal values for the input variables are 40% water content, 3500 ppm demulsifier, 60 °C, and pH 8.


Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 70
Author(s):  
Jasir Jawad ◽  
Alaa H. Hawari ◽  
Syed Javaid Zaidi

The forward osmosis (FO) process is an emerging technology that has been considered as an alternative to desalination due to its low energy consumption and less severe reversible fouling. Artificial neural networks (ANNs) and response surface methodology (RSM) have become popular for the modeling and optimization of membrane processes. RSM requires the data on a specific experimental design whereas ANN does not. In this work, a combined ANN-RSM approach is presented to predict and optimize the membrane flux for the FO process. The ANN model, developed based on an experimental study, is used to predict the membrane flux for the experimental design in order to create the RSM model for optimization. A Box–Behnken design (BBD) is used to develop a response surface design where the ANN model evaluates the responses. The input variables were osmotic pressure difference, feed solution (FS) velocity, draw solution (DS) velocity, FS temperature, and DS temperature. The R2 obtained for the developed ANN and RSM model are 0.98036 and 0.9408, respectively. The weights of the ANN model and the response surface plots were used to optimize and study the influence of the operating conditions on the membrane flux.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 558
Author(s):  
Thanida Charoensuk ◽  
Wannisa Thongsamrit ◽  
Chesta Ruttanapun ◽  
Pongsakorn Jantaratana ◽  
Chitnarong Sirisathitkul

Solution–processing methods were investigated as viable alternatives to produce the polymer-bonded barium hexaferrite (BaM). BaM powders were first synthesized by using the sol-gel auto-combustion method. While the ignition period in two synthesis batches varied, the morphology of hexagonal microplates and nanorods, as well as magnetic properties, were reproduced. To prepare magnetic polymer composites, these BaM powders were then incorporated into the acrylonitrile-butadiene-styrene (ABS) matrix with a weight ratio of 80:20, 70:30, and 60:40 by using the solution casting method. Magnetizations were linearly decreased with a reduction in ferrite loading. Compared to the BaM loose powders and pressed pellet, both remanent and saturation magnetizations were lower and gave rise to comparable values of the squareness. The squareness around 0.5 of BaM samples and their composites revealed the isotropic alignment. Interestingly, the coercivity was significantly increased from 1727–1776 Oe in loose BaM powders to 1874–2052 Oe for the BaM-ABS composites. These composites have potential to be implemented in the additive manufacturing of rare-earth-free magnets.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3583
Author(s):  
Junying Yang ◽  
Minye Huang ◽  
Shengsen Wang ◽  
Xiaoyun Mao ◽  
Yueming Hu ◽  
...  

In this study, a magnetic copper ferrite/montmorillonite-k10 nanocomposite (CuFe2O4/MMT-k10) was successfully fabricated by a simple sol-gel combustion method and was characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), the Brunner–Emmett–Teller (BET) method, vibrating sample magnetometer (VSM), and X-ray photoelectron spectroscopy (XPS). For levofloxacin (LVF) degradation, CuFe2O4/MMT-k10 was utilized to activate persulfate (PS). Due to the relative high adsorption capacity of CuFe2O4/MMT-k10, the adsorption feature was considered an enhancement of LVF degradation. In addition, the response surface methodology (RSM) model was established with the parameters of pH, temperature, PS dosage, and CuFe2O4/MMT-k10 dosage as the independent variables to obtain the optimal response for LVF degradation. In cycle experiments, we identified the good stability and reusability of CuFe2O4/MMT-k10. We proposed a potential mechanism of CuFe2O4/MMT-k10 activating PS through free radical quenching tests and XPS analysis. These results reveal that CuFe2O4/MMT-k10 nanocomposite could activate the persulfate, which is an efficient technique for LVF degradation in water.


2012 ◽  
Vol 532-533 ◽  
pp. 408-411
Author(s):  
Wei Tao Zhao ◽  
Yi Yang ◽  
Tian Jun Yu

The response surface method was proposed as a collection of statistical and mathematical techniques that are useful for modeling and analyzing a system which is influenced by several input variables. This method gives an explicit approximation of the implicit limit state function of the structure through a number of deterministic structural analyses. However, the position of the experimental points is very important to improve the accuracy of the evaluation of failure probability. In the paper, the experimental points are obtained by using Givens transformation in such way these experimental points nearly close to limit state function. A Numerical example is presented to demonstrate the improved accuracy and computational efficiency of the proposed method compared to the classical response surface method. As seen from the result of the example, the proposed method leads to a better approximation of the limit state function over a large region of the design space, and the number of experimental points using the proposed method is less than that of classical response surface method.


Sign in / Sign up

Export Citation Format

Share Document