scholarly journals Reinforcing Mechanisms of Graphene and Nano-TiC in Al2O3-Based Ceramic-Tool Materials

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1815 ◽  
Author(s):  
Zhefei Sun ◽  
Jun Zhao ◽  
Xuchao Wang ◽  
Enzhao Cui ◽  
Hao Yu

Graphene and nano-TiC, which have good reinforcing effects on Al2O3-based ceramic-tool materials, are generally used as additive phases for ceramics. In this study, nine kinds of samples were sintered, to investigate the effects of graphene and nano-TiC on the reinforcing mechanisms of Al2O3-based ceramics. The experimental results indicated that adding 0.5 vol% graphene and 10 vol% nano-TiC can obtain the optimum flexural strength, fracture toughness, and Vickers hardness, which were 705 ± 44 MPa, 7.4 ± 0.4 MPa m1/2, and 20.5 ± 0.8 GPa, respectively. Furthermore, the reinforcing mechanisms of crack bridging, pull-out of graphene, and pull-out of nano-TiC are identified, which are contributed to improving the mechanical properties of ceramics. Meanwhile, other reinforcing mechanisms induced by graphene (graphene break, crack guiding, and 3D propagation) and nano-TiC (crack branching, crack deflection, and peeling) are discussed. These reinforcing mechanisms are coupled together, while decoupling is hard to work out. Thus, further quantitative studies of reinforcing effects of graphene and nano-TiC on Al2O3-based ceramic-tool materials are necessary to be carried out.

2010 ◽  
Vol 431-432 ◽  
pp. 523-526
Author(s):  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Shou Rong Xiao ◽  
Hui Wang ◽  
Ming Hong

Under the liquid-phase hot-pressing technique, the multi-scale titanium diboride matrix nanocomposite ceramic tool materials were fabricated by adding both micro-scale and nano-scale TiN particles into TiB2 with Ni and Mo as sintering aids. The effect of content of nano-scale TiN and sintering temperature on the microstructure and mechanical properties was studied. The result showed that flexural strength and fracture toughness of the composites increased first, and then decreased with an increase of the content of nano-scale TiN, while the Vickers hardness decreased with an increase of the content of nano-scale TiN. The optimal mechanical properties were flexural strength 742 MPa, fracture toughness 6.5 MPa•m1/2 and Vickers hardness 17GPa respectively. The intergranular and transgranular fracture mode were observed in the composites. The metal phase can cause ductility toughening and crack bridging, while crack deflection and transgranular fracture mode could be brought by micro-scale TiN and nano-scale TiN respectively.


2014 ◽  
Vol 800-801 ◽  
pp. 511-515
Author(s):  
Xian Hua Tian ◽  
Jun Zhao ◽  
Shuai Liu ◽  
Zhao Chao Gong

Close attention has been paid to Functional graded materials (FGMs) worldwide for their novel design ideas and outstanding properties. To verify the advantage of FGMS in the design of ceramic tool materials, Si3N4/(W, Ti)C nanocomposite ceramic tool materials with homogenous and graded structure were fabricated by hot pressing and sintering technology. The flexural strength, fracture toughness and hardness of the sintered composites were tested and compared. The experimental results showed that the graded structure improved mechanical properties of the ceramic tool materials, especially the flexural strength and fracture toughness. The introduction of residual compressive stress in the surface layer contributes to the improvement of the properties .


2010 ◽  
Vol 434-435 ◽  
pp. 50-53 ◽  
Author(s):  
Xin Yan Yue ◽  
Shu Mao Zhao ◽  
Liang Yu ◽  
Hong Qiang Ru

B4C-TiB2 composite was prepared using hot pressure sintering. The microstructures and mechanical properties of the B4C-TiB2 composite were investigated. The B4C-TiB2 composite with 43 mass % TiB2 showed the optimized properties. The relative density, hardness, flexural strength and fracture toughness of that were 98.2 %, 25.9 GPa, 458 MPa and 8.7 MPa•m1/2, respectively. A number of toughening mechanisms, including fine grain, crack deflection and grain pull-out, were observed during microstructural analysis of the composite. The fracture mode of the B4C-TiB2 composite was greatly affected by the existence of the second phase of TiB2.


2012 ◽  
Vol 723 ◽  
pp. 233-237 ◽  
Author(s):  
Tong Chun Yang ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Bin Zou ◽  
Hong Tao Zhu ◽  
...  

TiB2-(W,Ti)C composites with (Ni,Mo) as sintering additive have been fabricated by hot-pressing technique, and the microstructure and mechanical properties of the composites have been investigated. (Ni,Mo) promotes grain growth of the composites. In the case of 7vol.% (Ni,Mo), the grain size decreases consistently with an increase in the content of (W,Ti)C. When the proper content of (W,Ti)C is added to TiB2 composites, the growth of matrix grains is inhibited and the mechanical properties of the composites are improved. The best mechanical properties of the composites are 1084.13MPa for three-point flexural strength, 7.80MPa•m 1/2 for fracture toughness and 17.92GPa for Vickers hardness.


2012 ◽  
Vol 499 ◽  
pp. 108-113
Author(s):  
Yu Huan Fei ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Bin Zou

Al2O3-TiN nanocomposite ceramic tool materials were fabricated by hot-pressing technique and the mechanical properties were measured. Mechanical properties such as room temperature flexural strength, Vickers hardness and fracture toughness were measured through three-point bending test and Vickers indentation. The effects of the content of nano-scale TiN, sintering temperature and holding time on the mechanical properties were investigated. The results shows that the addition of nano-scale TiN can improve the mechanical properties of alumina ceramics. Both the flexural strength and the fracture toughness first increased then decreased with an increment in the content of nano-scale TiN. Both the Vickers hardness and the fracture toughness increased with an increment in the sintering temperature. The flexural strength increased with an increment in the holding time, while the fracture toughness decreased with an increment in the holding time. The composites with only nano-scale TiN have the highest Vickers hardness for the holding time of 30min, while the hardness of the composites with nano-scale TiN and micro-scale TiN decreased with an increment in the holding time.


2010 ◽  
Vol 97-101 ◽  
pp. 1126-1129 ◽  
Author(s):  
Y.Z. Li ◽  
Jun Zhao

A model for designing sandwich nanocomposite ceramic tool materials with symmetrical distribution was presented. By adding nano-sized Al2O3 particles into the submicro-sized Al2O3 and TiCN, Al2O3/TiCN sandwich nanocomposite ceramic tool materials were fabricated by means of powder-laminating and hot-pressing technique. The experimental results showed that optimal mechanical properties were achieved for the composite with the addition of 35 vol.% TiCN particles in the middle layer and 45 vol.% TiCN particles in the outer layers, layer thickness ratio is 0.3, with the flexural strength reaching respectively 900MPa,fracture toughness and Vicker's hardness in the surface layers being 6.5MPa•m1/2 and 19.2GPa.


2012 ◽  
Vol 426 ◽  
pp. 155-158 ◽  
Author(s):  
Lin Liu ◽  
Chuan Zhen Huang ◽  
Bin Zou ◽  
Liang Xu ◽  
H.L. Liu ◽  
...  

TiB2-Ti(C, N)-(Ni, Mo) composite ceramic tool materials were fabricated by the hot-press sintering technology. The effects of the content of Ti(C, N) on the microstructure and mechanical properties were investigated by XRD and SEM observations. It is shown that the grain size of the composites is small, the fracture surface is irregularity, the grain boundaries of TiB2 and Ti(C, N) are connected tightly, and a new crystalline phase of MoNi is formed. A small amount of Ti(C, N) is decomposed into TiN, and the decomposition of Ti(C, N) is intensified as the content of Ti(C, N) is increased during the sintering process. The fracture pattern is the combination of the intergranular mode and transgranular mode. It is found that the flexural strength and fracture toughness of TiB2-Ti(C, N)-(Ni, Mo) composites increase consistently owning to the addition of Ti(C, N), the maximum resultant mechanical properties of TiB2-Ti(C, N)-(Ni, Mo) composites are 1019.53MPa for the flexural strength, 6.89MPa•m1/2 for the fracture toughness and 23.65GPa for Vickers hardness.


2006 ◽  
Vol 315-316 ◽  
pp. 154-158 ◽  
Author(s):  
Bin Zou ◽  
Chuan Zhen Huang ◽  
Jun Wang ◽  
Bing Qiang Liu

An effect of nano-scale TiN grains on the mechanical properties and microstructure of Si3N4 based ceramic tool materials is investigated at the different sintering temperature. Compared to monolithic Si3N4 ceramic tool materials, the sintering temperature is decreased and mechanical properties is enhanced when only one percent of nano-scale TiN in term of mass is added into the Si3N4 matrix. The optimum mechanical properties are achieved when Si3N4/TiN nanocomposites tool materials were sintered at the sintering conditions of 1650, 30MPa and holding time of 40min. The flexural strength, fracture toughness and hardness are 1018.2MPa, 8.62MPa⋅m1/2 and 14.58GPa respectively. SEM micrographs indicate that microstructure is composed of the elongated and equiaxed β-Si3N4 grains, and some nano-scale TiN grains are enveloped into matrix grains.


Author(s):  
Heng Luo ◽  
Chen Li ◽  
Lianwen Deng ◽  
Yang Li ◽  
Peng Xiao ◽  
...  

In-situ grown C0.3N0.7Ti and SiC, which derived from non-oxide additives Ti3SiC2, are proposed to densify silicon nitride (Si3N4) ceramics with enhanced mechanical performance. Remarkable increase of density from 79.20% to 95.48% could be achieved for Si3N4 ceramics with 5vol% Ti3SiC2. The capillarity of decomposed Si from Ti3SiC2, and in-situ reaction between nonstoichiometric TiCx and Si3N4 were believed to be responsible for densification of Si3N4 ceramics. An obvious enhancement of flexural strength and fracture toughness for Ti3SiC2 doped Si3N4 ceramics was observed. The maximum flexural strength of 795 MPa for Si3N4 composites with 5vol% Ti3SiC2 and maximum fracture toughness of 6.97 MPa.m1/2 for Si3N4 composites with 20vol% Ti3SiC2 are achieved when mixed powders are hot-press sintered at 1700℃. Pull out of elongated Si3N4 grains, crack bridging, crack branching and crack deflection were demonstrated to dominate enhance fracture toughness of Si3N4 composites.


2013 ◽  
Vol 770 ◽  
pp. 308-311 ◽  
Author(s):  
Ming Dong Yi ◽  
Chong Hai Xu ◽  
Zhao Qiang Chen ◽  
Guang Yong Wu

A new nanomicro composite self-lubricating ceramic tool material was prepared with vacuum hot pressing technique. The effect of nanoAl2O3 powders on the microstructure and mechanical properties of nanomicro composite self-lubricating ceramic tool material was investigated. With the increase of nanoAl2O3 content, the hardness and fracture toughness first up then down. When the nanoAl2O3 content is 4 vol.%, the flexural strength, hardness and fracture toughness reaches 562 MPa, 8.46 MPa·m1/2 and 18.95 GPa, respectively. The microstructure and mechanical property of nanomicro composite self-lubricating ceramic tool material can be improved by the grain refinement strengthening of nanoAl2O3.


Sign in / Sign up

Export Citation Format

Share Document