scholarly journals Synthesis and Characterization of Graphene Oxide and Reduced Graphene Oxide Composites with Inorganic Nanoparticles for Biomedical Applications

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1846
Author(s):  
Joanna Jagiełło ◽  
Adrian Chlanda ◽  
Magdalena Baran ◽  
Marcin Gwiazda ◽  
Ludwika Lipińska

Graphene oxide (GO) and reduced graphene oxide (RGO), due to their large active surface areas, can serve as a platform for biological molecule adhesion (both organic and inorganic). In this work we described methods of preparing composites consisting of GO and RGO and inorganic nanoparticles of specified biological properties: nanoAg, nanoAu, nanoTiO2 and nanoAg2O. The idea of this work was to introduce effective methods of production of these composites that could be used for future biomedical applications such as antibiotics, tissue regeneration, anticancer therapy, or bioimaging. In order to characterize the pristine graphene materials and resulting composites, we used spectroscopic techniques: XPS and Raman, microscopic techniques: SEM with and AFM, followed by X-Ray diffraction. We obtained volumetric composites of flake graphene and Ag, Au, Ag2O, and TiO2 nanoparticles; moreover, Ag nanoparticles were obtained using three different approaches.

2015 ◽  
Vol 17 (4) ◽  
pp. 95-103 ◽  
Author(s):  
Magdalena Onyszko ◽  
Karolina Urbas ◽  
Malgorzata Aleksandrzak ◽  
Ewa Mijowska

Abstract Graphene – novel 2D material, which possesses variety of fascinating properties, can be considered as a convenient support material for the nanoparticles. In this work various methods of synthesis of reduced graphene oxide with metal or metal oxide nanoparticles will be presented. The hydrothermal approach for deposition of platinum, palladium and zirconium dioxide nanoparticles in ethylene glycol/water solution was applied. Here, platinum/reduced graphene oxide (Pt/RGO), palladium/reduced graphene oxide (Pd/RGO) and zirconium dioxide/reduced graphene oxide (ZrO2/RGO) nanocomposites were prepared. Additionally, manganese dioxide/reduced graphene oxide nanocomposite (MnO2/RGO) was synthesized in an oleic-water interface. The obtained nanocomposites were investigated by transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), Raman spectroscopy and thermogravimetric analysis (TGA). The results shows that GO can be successfully used as a template for direct synthesis of metal or metal oxide nanoparticles on its surface with a homogenous distribution.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5241
Author(s):  
Christophe Daniel ◽  
Baku Nagendra ◽  
Maria Rosaria Acocella ◽  
Esther Cascone ◽  
Gaetano Guerra

High-porosity monolithic composite aerogels of syndiotactic polystyrene (sPS) and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) containing reduced graphene oxide (r-GO) were prepared and characterized. The composite aerogels obtained by supercritical carbon dioxide (scCO2) extraction of sPS/r-GO and PPO/r-GO gels were characterized by a fibrillar morphology, which ensured good handling properties. The polymer nanoporous crystalline phases obtained within the aerogels led to high surface areas with values up to 440 m2 g−1. The role of r-GO in aerogels was studied in terms of catalytic activity by exploring the oxidation capacity of composite PPO and sPS aerogels toward benzyl alcohol in diluted aqueous solutions. The results showed that, unlike sPS/r-GO aerogels, PPO/r-GO aerogels were capable of absorbing benzyl alcohol from the diluted solutions, and that oxidation of c.a. 50% of the sorbed benzyl alcohol molecules into benzoic acid occurred.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1758 ◽  
Author(s):  
Daniela Plachá ◽  
Josef Jampilek

Graphene-based nanomaterials have been intensively studied for their properties, modifications, and application potential. Biomedical applications are one of the main directions of research in this field. This review summarizes the research results which were obtained in the last two years (2017–2019), especially those related to drug/gene/protein delivery systems and materials with antimicrobial properties. Due to the large number of studies in the area of carbon nanomaterials, attention here is focused only on 2D structures, i.e. graphene, graphene oxide, and reduced graphene oxide.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2273 ◽  
Author(s):  
Adam Moyseowicz ◽  
Krzysztof Pająk ◽  
Katarzyna Gajewska ◽  
Grażyna Gryglewicz

Herein, we propose hydrothermal treatment as a facile and environmentally friendly approach for the synthesis of polypyrrole/reduced graphene oxide hybrids. A series of self-assembled hybrid materials with different component mass ratios of conductive polymer to graphene oxide was prepared. The morphology, porous structure, chemical composition and electrochemical performance of the synthesized hybrids as electrode materials for supercapacitors were investigated. Nitrogen sorption analysis at 77 K revealed significant changes in the textural development of the synthesized materials, presenting specific surface areas ranging from 25 to 199 m2 g−1. The combination of the pseudocapacitive polypyrrole and robust graphene material resulted in hybrids with excellent electrochemical properties, which achieved specific capacitances as high as 198 F g−1 at a current density of 20 A g−1 and retained up to 92% of their initial capacitance after 3000 charge–discharge cycles. We found that a suitable morphology and chemical composition are key factors that determine the electrochemical properties of polypyrrole/reduced graphene oxide hybrid materials.


2021 ◽  
pp. 108616
Author(s):  
Danilo Argentoni Nagaoka ◽  
Daniel Grasseschi ◽  
Sergio Humberto Domingues

RSC Advances ◽  
2016 ◽  
Vol 6 (49) ◽  
pp. 43401-43407 ◽  
Author(s):  
Ritesh Sevanthi ◽  
Fahmida Irin ◽  
Dorsa Parviz ◽  
W. Andrew Jackson ◽  
Micah J. Green

The objective of this study was to investigate Joule heating/electric swing adsorption (ESA) as a mode of regeneration and to compare the carbon dioxide (CO2) adsorption capacity of pristine graphene films and reduced graphene oxide (rGO) aerogels.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 952 ◽  
Author(s):  
Hee-Jo Lee ◽  
Jong-Gwan Yook

In this paper, the advances in radio-frequency (RF)/microwave biosensors based on graphene nanomaterials including graphene, graphene oxide (GO), and reduced graphene oxide (rGO) are reviewed. From a few frontier studies, recently developed graphene nanomaterials-based RF/microwave biosensors are examined in-depth and discussed. Finally, the prospects and challenges of the next-generation RF/microwave biosensors for wireless biomedical applications are proposed.


Sign in / Sign up

Export Citation Format

Share Document