scholarly journals Titanium Disulfide Based Saturable Absorber for Generating Passively Mode-Locked and Q-Switched Ultra-Fast Fiber Lasers

Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1922
Author(s):  
Xinxin Shang ◽  
Linguang Guo ◽  
Huanian Zhang ◽  
Dengwang Li ◽  
Qingyang Yue

In our work, passively mode-locked and Q-switched Er-doped fiber lasers (EDFLs) based on titanium disulfide (TiS2) as a saturable absorber (SA) were generated successfully. Stable mode-locked pulses centred at 1531.69 nm with the minimum pulse width of 2.36 ps were obtained. By reducing the length of the laser cavity and optimizing the cavity loss, Q-switched operation with a maximum pulse energy of 67.2 nJ and a minimum pulse duration of 2.34 µs was also obtained. Its repetition rate monotonically increased from 13.17 kHz to 48.45 kHz with about a 35 kHz tuning range. Our experiment results fully indicate that TiS2 exhibits excellent nonlinear absorption performance and significant potential in acting as ultra-fast photonics devices.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
H. Ahmad ◽  
R. Ramli ◽  
N. N. Ismail ◽  
S. N. Aidit ◽  
N. Yusoff ◽  
...  

AbstractAs a result of the emergence of two-dimensional (2D) materials for various opto-electronics applications, a new class of materials named MXenes have been attracting interests due to their outstanding nonlinear properties. In this work, an MXene niobium carbide (Nb2C) was proposed and demonstrated as a saturable absorber to induce mode-locking in thulium- and thulium/holmium-doped fiber lasers. The Nb2C solution was first prepared using the liquid exfoliation technique, and then deposited onto a microfiber for integration into the laser cavity. Stable mode-locking operation was observed in both laser cavities, where the center wavelengths of the laser were recorded at 1944 nm for the TDFL and 1950 nm for the THDFL. The generated pulses in the TDFL and THDFL had repetition rates of 9.35 and 11.76 MHz respectively, while their corresponding pulse widths were 1.67 and 1.34 ps. Both of the lasers were highly stable, having SNR values of more than 52 dB and showed no major fluctuations when tested for their long-term stabilities. The results demonstrate an excellent performance of the Nb2C as a saturable absorber, offering opportunities to further explore MXenes for future photonics devices.


2021 ◽  
Author(s):  
Harith Ahmad ◽  
Rizal Ramli ◽  
Nor Najwa Ismail ◽  
Siti Nabila Aidit ◽  
Norazriena Yusoff ◽  
...  

Abstract As a result of the emergence of two-dimensional (2D) materials for various opto-electronics applications, a new class of materials named MXenes have been attracting interests due to their outstanding nonlinear properties. In this work, an MXene niobium carbide (Nb2C) was proposed and demonstrated as a saturable absorber to induce mode-locking in thulium- and thulium/holmium-doped fiber lasers. The Nb2C solution was first prepared using the liquid exfoliation technique, and then deposited onto a microfiber for integration into the laser cavity. Stable mode-locking operation was observed in both laser cavities, where the center wavelengths of the laser were recorded at 1944 nm for the TDFL and 1950 nm for the THDFL. The generated pulses in the TDFL and THDFL had repetition rates of 9.35 and 11.76 MHz respectively, while their corresponding pulse widths were 1.67 and 1.34 ps. Both of the lasers were highly stable, having SNR values of more than 52 dB and showed no major fluctuations when tested for their long-term stabilities. The results demonstrate an excellent performance of the Nb2C as a saturable absorber, offering opportunities to further explore MXenes for future photonics devices.


2018 ◽  
Vol 150 ◽  
pp. 01009
Author(s):  
Noor Azura Awang ◽  
Nor Syuhada Aziz ◽  
Atiqah Nabieha Azmi ◽  
Fatin Shaqira Hadi ◽  
Zahariah Zakaria

We demonstrated the comparison experimentally and numerically a compact Q-switched erbium-doped fiber (EDF) laser based on graphene as a saturable absorber (SA). By optically driven deposition of graphene on a fiber core, the SA is constructed and inserted into a diode-pumped EDF laser cavity. Lasing in CW region starts at 10 mW, whereas stable self-starting Q-switching with a central wavelength of 1530 nm begins at 18 mW. In this paper, at 35 mW, the maximum pulse energy reaches at 2 μJ with pulse repetition rate of 1 MHz and the narrowest pulse width is around 10 μs is obtained. The stability of the pulse is verified from the radio-frequency (RF) spectrum with a measured signal-to-noise ratio (SNR) of 48 dB. In this study, the design is compared with the simulation using the Optisystem software. The output power of the experimental study is also compared with the simulation to examine the performance.


2020 ◽  
Vol 8 ◽  
Author(s):  
Meng Wang ◽  
Yijian Huang ◽  
Zongpeng Song ◽  
Jincheng Wei ◽  
Jihong Pei ◽  
...  

We report on mode-locked thulium-doped fiber lasers with high-energy nanosecond pulses, relying on the transmission in a semiconductor saturable absorber (SESA) and a carbon nanotube (CNTs-PVA) film separately. A section of an SMF–MMF–SMF structure multimode interferometer with a transmission peak wavelength of ∼2003 nm was used as a wavelength selector to fix the laser wavelength. When the SESA acted as a saturable absorber (SA), the mode-locked fiber laser had a maximum output power of ∼461 mW with a pulse energy of ∼0.14 μJ and a pulse duration of ∼9.14 ns. In a CNT-film-based mode-locked fiber laser, stable mode-locked pulses with the maximum output power of ∼46 mW, pulse energy of ∼26.8 nJ and pulse duration of ∼9.3 ns were obtained. To the best of our knowledge, our experiments demonstrated the first 2 μm region ‘real’ SA-based dissipative soliton resonance with the highest mode-locked pulse energy from a ‘real’ SA-based all-fiberized resonator.


2015 ◽  
Author(s):  
J. Sotor ◽  
G. Sobon ◽  
J. Boguslawski ◽  
J. Tarka ◽  
Krzysztof M. Abramski

2012 ◽  
Vol 30 (21) ◽  
pp. 3413-3419 ◽  
Author(s):  
Pi Ling Huang ◽  
Hsin-Hui Kuo ◽  
Rui-Xuan Dong ◽  
Bi-Zen Hsieh ◽  
Shr-Hau Huang ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 9 (14) ◽  
pp. 4295-4306 ◽  
Author(s):  
Nannan Xu ◽  
Haifeng Wang ◽  
Huanian Zhang ◽  
Linguang Guo ◽  
Xinxin Shang ◽  
...  

AbstractLayered transition metal dichalcogenides with excellent nonlinear absorption properties have shown remarkable performance in acting as ultrafast photonics devices. In our work, palladium diselenide (PdSe2) nanosheets with competitive advantages of wide tunable bandgap, unique puckered pentagonal structure and excellent air stability are prepared by the liquid-phase exfoliation method. Its ultrafast absorption performance was verified by demonstrating conventional and dissipative soliton operations within Er-doped fiber lasers. The minimum pulse width of the conventional soliton was 1.19 ps. Meanwhile, dissipative soliton with a 46.67 mW output power, 35.37 nm spectrum width, 14.92 ps pulse width and 2.86 nJ pulse energy was also generated successfully. Our enhanced experiment results present the excellent absorption performance of PdSe2 and highlight the capacity of PdSe2 in acting as ultrafast photonics devices.


2021 ◽  
Vol 2075 (1) ◽  
pp. 012008
Author(s):  
M A Mat Salim ◽  
M A Ismail ◽  
M Z A Razak ◽  
Saaidal R. Azzuhri ◽  
H Bakhtiar ◽  
...  

Abstract Pulses fiber laser had been successfully generated by using multi-wall carbon nanotubes thin film saturable absorber at room temperature. The saturable absorber is incorporated into a ring laser cavity. A stable Kelly sidebands mode-locked pulse spectrum with 1561.3 nm wavelength at the pump power of 86.8 mW. The repetition rate and pulse width of 12.3 MHz and 0.51 picosecond, respectively. A stable operation is observed for an hour at room temperature. These simple and reliable system features offer interesting research study especially in mode-locked pulse generation at 1.5 μm waveband.


Sign in / Sign up

Export Citation Format

Share Document