scholarly journals Photons to Formate: A Review on Photocatalytic Reduction of CO2 to Formic Acid

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2422
Author(s):  
Hanqing Pan ◽  
Michael D. Heagy

Rising levels of atmospheric carbon dioxide due to the burning and depletion of fossil fuels is continuously raising environmental concerns about global warming and the future of our energy supply. Renewable energy, especially better utilization of solar energy, is a promising method for CO2 conversion and chemical storage. Research in the solar fuels area is focused on designing novel catalysts and developing new conversion pathways. In this review, we focus on the photocatalytic reduction of CO2 primarily in its neutral pH species of carbonate to formate. The first two-electron photoproduct of carbon dioxide, a case for formate (or formic acid) is made in this review based on its value as; an important chemical feedstock, a hydrogen storage material, an intermediate to methanol, a high-octane fuel and broad application in fuel cells. This review focuses specifically on the following photocatalysts: semiconductors, phthalocyanines as photosensitizers and membrane devices and metal-organic frameworks.

2021 ◽  
Author(s):  
Yurong Shan ◽  
Dexiang Liu ◽  
Chunyan Xu ◽  
Peng Zhan ◽  
Hui Wang ◽  
...  

In this work, PMA@NH2-MIL-68(Rh) with a mangosteen spherical structure was successfully synthesized by a hydrothermal method for the photocatalytic reduction of carbon dioxide. The electronic structure and morphology of the...


Author(s):  
Qi Hang Low ◽  
Boon Siang Yeo

Abstract Anthropogenic activities powered by the burning of fossil fuels have caused excessive emissions of carbon dioxide (CO2) to the atmosphere. This has a negative impact on our environment. One promising approach to reduce the concentration of atmospheric CO2 is to convert it to useful products. This could be achieved via the electrochemical reduction of CO2 using renewable electricity. Methanol (CH3OH), a valuable fuel and feedstock, is one of the CO2 electroreduction products. However, its formation, thus far, has been plagued by the inadequacy of functional electrocatalysts. In this review, we summarize progresses made in the development of methanol-selective electrocatalysts, which provides us with a basis to discuss the underlying challenges of electroreducing CO2 to methanol.


2021 ◽  
Author(s):  
Wenzhang Li ◽  
Keke Wang ◽  
yanfang Ma ◽  
Yang Liu ◽  
Weixin Qiu ◽  
...  

The ever-growing factitious over-consumption of fossil fuels and the accompanying massive emissions of CO2 have caused severe energy crisis and environmental issues. Photoelectrochemical (PEC) reduction of CO2 that can combine...


Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1127
Author(s):  
Zhenyu Wang ◽  
Xiuling Jiao ◽  
Dairong Chen ◽  
Cheng Li ◽  
Minghui Zhang

A novel metal organic framework (MOF)-derived porous copper/zinc bimetallic oxide catalyst was developed for the photoreduction of CO2 to methanol at a very fast rate of 3.71 mmol gcat−1 h−1. This kind of photocatalyst with high activity, selectivity and a simple preparation catalyst provides promising photocatalyst candidates for reducing CO2 to methanol.


1998 ◽  
Vol 76 (2) ◽  
pp. 228-233
Author(s):  
Kiyohisa Ohta ◽  
Youko Ueda ◽  
Satoshi Nakaguchi ◽  
Takayuki Mizuno

The photocatalytic reduction of CO2 using copper-loaded silicate rocks has been reported. The Cu-silicate rock powders suspended in the solution were illuminated with sunlight. Amphibolite, gneiss, granite, granodiorite, phyllite, quartzdiorite, and shale, which are quite ordinary rocks, were tested as substrates (silicate rock) of the catalyst. These catalysts were specific for the formation of formic acid. The effects of amounts of copper, illumination time, and temperature were investigated on photoreduction of CO2. The 30% Cu-loaded quartzdiorite (0.3 g/g) in these Cu rocks was the best catalyst. The formation of formic acid on the Cu-silicate rock increased with time up to 10 h after which the formation decreased, and then became constant. The formic acid formation decreased with temperature for 10 h sunlight illumination. For the photochemical reduction of CO2, a relatively low temperature was suitable. With photochemical reduction, the maximum yield of formic acid was 54 nmol/g under optimum experimental conditions. The carbon dioxide reduction system developed might well become of practical interest for the photochemical production of raw materials for the photochemical industry.Key words: photocatalytic reduction of carbon dioxide, formic acid, copper-loaded silicate rocks, temperature effect, illumination time.


Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 581 ◽  
Author(s):  
Sonam Goyal ◽  
Maizatul Shaharun ◽  
Chong Kait ◽  
Bawadi Abdullah ◽  
Mariam Ameen

The efficient reduction of CO2 into valuable products such as methanol, over metal-organic frameworks (MOFs) based catalyst, has received much attention. The photocatalytic reduction is considered the most economical method due to the utilization of solar energy. In this study, Copper (II)/Zeolitic Imidazolate Framework-8 (Cu/ZIF-8) catalysts were synthesized via a hydrothermal method for photocatalytic reduction of CO2 to methanol. The synthesized catalysts were characterized by X-ray Photoelectron Spectroscopy (XPS), Field Emission Scanning Electron Microscopy (FESEM) coupled with Energy Dispersive X-ray (EDX), Ultraviolet-visible (UV-vis) spectroscopy, and X-Ray Diffraction (XRD). The host ZIF-8, treated with 2 mmol copper prepared in 2M ammonium hydroxide solution showed the highest photocatalytic activity. The crystal structures of ZIF-8 and 2Cu/ZIF-8N2 catalysts were observed as cubic and orthorhombic, respectively and the XPS analysis confirmed the deposition of Cu (II) ions over ZIF-8 surface among all the prepared catalysts. The orthorhombic structure, nano-sized crystals, morphology and Cu loading of the 2Cu/ZIF-8N2 catalyst were the core factors to influence the photocatalytic activity. The yield of Methanol was found to be 35.82 µmol/L·g after 6 h of irradiations on 2Cu/ZIF-8N2 catalyst in the wavelength range between 530–580 nm. The copper-based ZIF-8 catalyst has proven as an alternative approach for the economical photocatalytic reduction of CO2 to CH3OH.


2016 ◽  
Vol 3 (10) ◽  
pp. 1256-1263 ◽  
Author(s):  
Hao Yu ◽  
Cheng He ◽  
Jing Xu ◽  
Chunying Duan ◽  
Joost N. H. Reek

By encapsulation of an organic dye, a supramolecular nickel–organic macrocycle for the photocatalytic reduction of protons and CO2 has been reported.


2013 ◽  
Vol 64 (5) ◽  
pp. 578-585 ◽  
Author(s):  
Qian Zhang ◽  
Cheng-Fang Lin ◽  
You Hai Jing ◽  
Chang-Tang Chang

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xinchen Kang ◽  
Lili Li ◽  
Alena Sheveleva ◽  
Xue Han ◽  
Jiangnan Li ◽  
...  

Abstract Electrochemical reduction of carbon dioxide is a clean and highly attractive strategy for the production of organic products. However, this is hindered severely by the high negative potential required to activate carbon dioxide. Here, we report the preparation of a copper-electrode onto which the porous metal–organic framework [Cu2(L)] [H4L = 4,4′,4″,4′′′-(1,4-phenylenebis(pyridine-4,2,6-triyl))tetrabenzoic acid] can be deposited by electro-synthesis templated by an ionic liquid. This decorated electrode shows a remarkable onset potential for reduction of carbon dioxide to formic acid at −1.45 V vs. Ag/Ag+, representing a low value for electro-reduction of carbon dioxide in an organic electrolyte. A current density of 65.8 mA·cm−2 at −1.8 V vs. Ag/Ag+ is observed with a Faradaic efficiency to formic acid of 90.5%. Electron paramagnetic resonance spectroscopy confirms that the templated electro-synthesis affords structural defects in the metal–organic framework film comprising uncoupled Cu(II) centres homogenously distributed throughout. These active sites promote catalytic performance as confirmed by computational modelling.


Sign in / Sign up

Export Citation Format

Share Document