scholarly journals Electrolyte-Dependent Modification of Resistive Switching in Anodic Hafnia

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 666
Author(s):  
Ivana Zrinski ◽  
Cezarina Cela Mardare ◽  
Luiza-Izabela Jinga ◽  
Jan Philipp Kollender ◽  
Gabriel Socol ◽  
...  

Anodic HfO2 memristors grown in phosphate, borate, or citrate electrolytes and formed on sputtered Hf with Pt top electrodes are characterized at fundamental and device levels. The incorporation of electrolyte species deep into anodic memristors concomitant with HfO2 crystalline structure conservation is demonstrated by elemental analysis and atomic scale imaging. Upon electroforming, retention and endurance tests are performed on memristors. The use of borate results in the weakest memristive performance while the citrate demonstrates clear superior memristive properties with multilevel switching capabilities and high read/write cycling in the range of 106. Low temperature heating applied to memristors shows a direct influence on their behavior mainly due to surface release of water. Citrate-based memristors show remarkable properties independent on device operation temperatures up to 100 °C. The switching dynamic of anodic HfO2 memristors is discussed by analyzing high resolution transmission electron microscope images. Full and partial conductive filaments are visualized, and apart from their modeling, a concurrency of filaments is additionally observed. This is responsible for the multilevel switching mechanism in HfO2 and is related to device failure mechanisms.

Author(s):  
E.G. Bithell ◽  
W.M. Stobbs

It is well known that the microstructural consequences of the ion implantation of semiconductor heterostructures can be severe: amorphisation of the damaged region is possible, and layer intermixing can result both from the original damage process and from the enhancement of the diffusion coefficients for the constituents of the original composition profile. A very large number of variables are involved (the atomic mass of the target, the mass and energy of the implant species, the flux and the total dose, the substrate temperature etc.) so that experimental data are needed despite the existence of relatively well developed models for the implantation process. A major difficulty is that conventional techniques (e.g. electron energy loss spectroscopy) have inadequate resolution for the quantification of any changes in the composition profile of fine scale multilayers. However we have demonstrated that the measurement of 002 dark field intensities in transmission electron microscope images of GaAs / AlxGa1_xAs heterostructures can allow the measurement of the local Al / Ga ratio.


Author(s):  
W. D. Cooper ◽  
C. S. Hartley ◽  
J. J. Hren

Interpretation of electron microscope images of crystalline lattice defects can be greatly aided by computer simulation of theoretical contrast from continuum models of such defects in thin foils. Several computer programs exist at the present time, but none are sufficiently general to permit their use as an aid in the identification of the range of defect types encountered in electron microscopy. This paper presents progress in the development of a more general computer program for this purpose which eliminates a number of restrictions contained in other programs. In particular, the program permits a variety of foil geometries and defect types to be simulated.The conventional approximation of non-interacting columns is employed for evaluation of the two-beam dynamical scattering equations by a piecewise solution of the Howie-Whelan equations.


Author(s):  
J. L. Lee ◽  
C. A. Weiss ◽  
R. A. Buhrman ◽  
J. Silcox

BaF2 thin films are being investigated as candidates for use in YBa2Cu3O7-x (YBCO) / BaF2 thin film multilayer systems, given the favorable dielectric properties of BaF2. In this study, the microstructural and chemical compatibility of BaF2 thin films with YBCO thin films is examined using transmission electron microscopy and microanalysis. The specimen was prepared by using laser ablation to first deposit an approximately 2500 Å thick (0 0 1) YBCO thin film onto a (0 0 1) MgO substrate. An approximately 7500 Å thick (0 0 1) BaF2 thin film was subsequendy thermally evaporated onto the YBCO film.Images from a VG HB501A UHV scanning transmission electron microscope (STEM) operating at 100 kV show that the thickness of the BaF2 film is rather uniform, with the BaF2/YBCO interface being quite flat. Relatively few intrinsic defects, such as hillocks and depressions, were evident in the BaF2 film. Moreover, the hillocks and depressions appear to be faceted along {111} planes, suggesting that the surface is smooth and well-ordered on an atomic scale and that an island growth mechanism is involved in the evolution of the BaF2 film.


Author(s):  
Robert C. Cieslinski ◽  
H. Craig Silvis ◽  
Daniel J. Murray

An understanding of the mechanical behavior polymers in the ductile-brittle transition region will result in materials with improved properties. A technique has been developed that allows the realtime observation of dynamic plane stress failure mechanisms in the transmission electron microscope. With the addition of a cryo-tensile stage, this technique has been extented to -173°C, allowing the observation of deformation during the ductile-brittle transition.The technique makes use of an annealed copper cartridge in which a thin section of bulk polymer specimen is bonded and plastically deformed in tension in the TEM using a screw-driven tensile stage. In contrast to previous deformation studies on solvent-cast films, this technique can examine the frozen-in morphology of a molded part.The deformation behavior of polypropylene and polypropylene impact modified with EPDM (ethylene-propylene diene modified) and PE (polyethylene) rubbers were investigated as function of temperature and the molecular weight of the impact modifier.


Author(s):  
P. Fraundorf ◽  
J. Tentschert

Since the discovery of their etchability in the early 1960‘s, nuclear particle tracks in insulators have had a diverse and exciting history of application to problems ranging from the selective filtration of cancer cells from blood to the detection of 244Pu in the early solar system. Their usefulness stems from the fact that they are comprised of a very thin (e.g. 20-40Å) damage core which etches more rapidly than does the bulk material. In fact, because in many insulators tracks are subject to radiolysis damage (beam annealing) in the transmission electron microscope, the body of knowledge concerning etched tracks far outweighs that associated with latent (unetched) tracks in the transmission electron microscope.With the development of scanned probe microscopies with lateral resolutions on the near atomic scale, a closer look at the structure of unetched nuclear particle tracks, particularly at their point of interface with solid surfaces, is now warranted and we think possible. The ion explosion spike model of track formation, described loosely, suggests that a burst of ionization along the path of a charged particle in an insulator creates an electrostatically unstable array of adjacent ions which eject one another by Coulomb repulsion from substitutional into interstitial sites. Regardless of the mechanism, the ejection process which acts to displace atoms along the track core seems likely to operate at track entry and exit surfaces, with the added feature of mass loss at those surfaces as well. In other words, we predict pits whose size is comparable to the track core width.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 163
Author(s):  
Iryna Zelenina ◽  
Igor Veremchuk ◽  
Yuri Grin ◽  
Paul Simon

Nano-scaled thermoelectric materials attract significant interest due to their improved physical properties as compared to bulk materials. Well-shaped nanoparticles such as nano-bars and nano-cubes were observed in the known thermoelectric material PbTe. Their extended two-dimensional nano-layer arrangements form directly in situ through electron-beam treatment in the transmission electron microscope. The experiments show the atomistic depletion mechanism of the initial crystal and the recrystallization of PbTe nanoparticles out of the microparticles due to the local atomic-scale transport via the gas phase beyond a threshold current density of the beam.


2021 ◽  
Vol 10 (3) ◽  
pp. 578-586
Author(s):  
Lin-Kun Shi ◽  
Xiaobing Zhou ◽  
Jian-Qing Dai ◽  
Ke Chen ◽  
Zhengren Huang ◽  
...  

AbstractA nano-laminated Y3Si2C2 ceramic material was successfully synthesized via an in situ reaction between YH2 and SiC using spark plasma sintering technology. A MAX phase-like ternary layered structure of Y3Si2C2 was observed at the atomic-scale by high resolution transmission electron microscopy. The lattice parameters calculated from both X-ray diffraction and selected area electron diffraction patterns are in good agreement with the reported theoretical results. The nano-laminated fracture of kink boundaries, delamination, and slipping were observed at the tip of the Vickers indents. The elastic modulus and Vickers hardness of Y3Si2C2 ceramics (with 5.5 wt% Y2O3) sintered at 1500 °C were 156 and 6.4 GPa, respectively. The corresponding values of thermal and electrical conductivity were 13.7 W·m-1·K-1 and 6.3×105 S·m-1, respectively.


2014 ◽  
Vol 20 (6) ◽  
pp. 1782-1790 ◽  
Author(s):  
Ping Lu ◽  
Eric Romero ◽  
Shinbuhm Lee ◽  
Judith L. MacManus-Driscoll ◽  
Quanxi Jia

AbstractWe report our effort to quantify atomic-scale chemical maps obtained by collecting energy-dispersive X-ray spectra (EDS) using scanning transmission electron microscopy (STEM) (STEM-EDS). With thin specimen conditions and localized EDS scattering potential, the X-ray counts from atomic columns can be properly counted by fitting Gaussian peaks at the atomic columns, and can then be used for site-by-site chemical quantification. The effects of specimen thickness and X-ray energy on the Gaussian peak width are investigated using SrTiO3 (STO) as a model specimen. The relationship between the peak width and spatial resolution of an EDS map is also studied. Furthermore, the method developed by this work is applied to study cation occupancy in a Sm-doped STO thin film and antiphase boundaries (APBs) present within the STO film. We find that Sm atoms occupy both Sr and Ti sites but preferably the Sr sites, and Sm atoms are relatively depleted at the APBs likely owing to the effect of strain.


Sign in / Sign up

Export Citation Format

Share Document