scholarly journals Emergence and Evolution of Crystallization in TiO2 Thin Films: A Structural and Morphological Study

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1409
Author(s):  
Ofelia Durante ◽  
Cinzia Di Giorgio ◽  
Veronica Granata ◽  
Joshua Neilson ◽  
Rosalba Fittipaldi ◽  
...  

Among all transition metal oxides, titanium dioxide (TiO2) is one of the most intensively investigated materials due to its large range of applications, both in the amorphous and crystalline forms. We have produced amorphous TiO2 thin films by means of room temperature ion-plasma assisted e-beam deposition, and we have heat-treated the samples to study the onset of crystallization. Herein, we have detailed the earliest stage and the evolution of crystallization, as a function of both the annealing temperature, in the range 250–1000 °C, and the TiO2 thickness, varying between 5 and 200 nm. We have explored the structural and morphological properties of the as grown and heat-treated samples with Atomic Force Microscopy, Scanning Electron Microscopy, X-ray Diffractometry, and Raman spectroscopy. We have observed an increasing crystallization onset temperature as the film thickness is reduced, as well as remarkable differences in the crystallization evolution, depending on the film thickness. Moreover, we have shown a strong cross-talking among the complementary techniques used displaying that also surface imaging can provide distinctive information on material crystallization. Finally, we have also explored the phonon lifetime as a function of the TiO2 thickness and annealing temperature, both ultimately affecting the degree of crystallinity.

2021 ◽  
pp. 4416-4424
Author(s):  
Saja Qasim ◽  
Ameer F. AbdulAmeer ◽  
Ali H A Jalaukhan

    In this study the as-deposited and heat treated at 423K of conductive blend graphene oxide (GO)/ poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) thin films was prepared with different PEDOT:PSS concentration (0, 0.25, 0.5, 0.75 and 1)w/w on pre-cleaned glass substrate by spin coater. The XRD analysis indicate the existence of the preffered peak (001) of GO around 2θ=8.24° which is domain in all GO/ PEDOT:PSS films characterized for GO, this result approve the good quality of the PEDOT:PSS dispersion in GO, this peak shifted to the lower 2θ with increasing PEDOT:PSS concentration and after annealing process. The scanning electron microscopy (SEM) images and atomic force microscopy (AFM) clearly show the GO flakes and go to disappear with increasing the PEDOT:PSS concentration. 


2020 ◽  
Vol 9 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Md Faruk Hossain ◽  
Md Sarwar Pervez ◽  
M A I Nahid

2016 ◽  
Vol 16 (02) ◽  
pp. 1650028 ◽  
Author(s):  
A. A. A. Darwish ◽  
F. S. Abu-Samaha ◽  
Z. Mohamed ◽  
M. M. El-Nahass

TiO2 powder was found to be polycrystalline with rutile system. TiO2 films were deposited on quartz substrates by a sol–gel spin coating technique. X-ray diffraction and transmission electron microscope results have confirmed that the TiO2 films have nanostructure nature. It is found the crystallite size increased with annealing temperature. The optical constants of nanostructured TiO2 films were found to be independent of film thickness in the range from 100[Formula: see text]nm to 500[Formula: see text]nm. It is found that the optical constants and the dielectric constant of the thin films were all affected by annealing temperature. The existing allowed optical transitions in the as-deposited and annealed films were found to be direct and indirect transitions. Finally, the bandgaps of the as-deposited film were found to decrease with the annealing temperature.


Cerâmica ◽  
2002 ◽  
Vol 48 (305) ◽  
pp. 38-42 ◽  
Author(s):  
M. I. B. Bernardi ◽  
E. J. H. Lee ◽  
P. N. Lisboa-Filho ◽  
E. R. Leite ◽  
E. Longo ◽  
...  

The synthesis of TiO2 thin films was carried out by the Organometallic Chemical Vapor Deposition (MOCVD) method. The influence of deposition parameters used during growth on the final structural characteristics was studied. A combination of the following experimental parameters was studied: temperature of the organometallic bath, deposition time, and temperature and substrate type. The high influence of those parameters on the final thin film microstructure was analyzed by scanning electron microscopy with electron dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction.


Solar Energy ◽  
2009 ◽  
Vol 83 (9) ◽  
pp. 1499-1508 ◽  
Author(s):  
N.R. Mathews ◽  
Erik R. Morales ◽  
M.A. Cortés-Jacome ◽  
J.A. Toledo Antonio

2009 ◽  
Vol 67 ◽  
pp. 65-70 ◽  
Author(s):  
Gaurav Shukla ◽  
Alika K. Khare

TiO2 is a widely studied material for many important applications in areas such as environmental purification, photocatalyst, gas sensors, cancer therapy and high effect solar cell. However, investigations demonstrated that the properties and applications of titanium oxide films depend upon the nature of the crystalline phases present in the films, i.e. anatase and rutile phases. We report on the pulsed laser deposition of high quality TiO2 thin films. Pulsed Laser deposition of TiO2 thin films were performed in different ambient viz. oxygen, argon and vacuum, using a second harmonic of Nd:YAG laser of 6 ns pulse width. These deposited films of TiO2 were further annealed for 5hrs in air at different temperatures. TiO2 thin films were characterized using x-ray diffraction, SEM, photoluminescence, transmittance and reflectance. We observed effect of annealing over structural, morphological and optical properties of TiO2 thin films. The anatase phase of as-deposited TiO2 thin films is found to change into rutile phase with increased annealing temperature. Increase in crystalline behaviour of thin films with post-annealing temperature is also observed. Surface morphology of TiO2 thin films is dependent upon ambient pressure and post- annealing temperature. TiO2 thin films are found to be optically transparent with very low reflectivity hence will be suitable for antireflection coating applications.


2003 ◽  
Vol 780 ◽  
Author(s):  
Rasmi R. Das ◽  
P. Bhattacharya ◽  
W. Pérez ◽  
Ram S. Katiyarxya

AbstractPulsed-laser-deposition technique was used to grow SrBi2Nb2O9(SBN) thin films on platinized silicon substrates. The effect of annealing temperature and film thicknesses on the structural and electrical properties has been studied. The average grain size and rms surface roughness was found to increase with increasing annealing temperature. The degree of orientation along the (200) direction was increased with the film thicknesses. The remanent polarization was found to be increased with the film thicknesses and was attributed to the selftexturing characteristics of SBN films. Thin films with higher thickness (∼570 nm) exhibited high value of remanent polarization (∼38 ν/cm2) with coercive field of 185 kV/cm. There was a reduction of coercive field with the film thickness. The dielectric constant was observed to be independent of the film thickness. The increase in loss tangent with increasing film thicknesses was attributed to the reduction of dielectric breakdown strength of the films. The SBN thin films showed minimal fatigue characteristics and suitable material for memory devices.


Sign in / Sign up

Export Citation Format

Share Document