Influence of Film Thickness on Optical and Morphological Properties of TiO2 Thin Films

2020 ◽  
Vol 9 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Md Faruk Hossain ◽  
Md Sarwar Pervez ◽  
M A I Nahid
Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1409
Author(s):  
Ofelia Durante ◽  
Cinzia Di Giorgio ◽  
Veronica Granata ◽  
Joshua Neilson ◽  
Rosalba Fittipaldi ◽  
...  

Among all transition metal oxides, titanium dioxide (TiO2) is one of the most intensively investigated materials due to its large range of applications, both in the amorphous and crystalline forms. We have produced amorphous TiO2 thin films by means of room temperature ion-plasma assisted e-beam deposition, and we have heat-treated the samples to study the onset of crystallization. Herein, we have detailed the earliest stage and the evolution of crystallization, as a function of both the annealing temperature, in the range 250–1000 °C, and the TiO2 thickness, varying between 5 and 200 nm. We have explored the structural and morphological properties of the as grown and heat-treated samples with Atomic Force Microscopy, Scanning Electron Microscopy, X-ray Diffractometry, and Raman spectroscopy. We have observed an increasing crystallization onset temperature as the film thickness is reduced, as well as remarkable differences in the crystallization evolution, depending on the film thickness. Moreover, we have shown a strong cross-talking among the complementary techniques used displaying that also surface imaging can provide distinctive information on material crystallization. Finally, we have also explored the phonon lifetime as a function of the TiO2 thickness and annealing temperature, both ultimately affecting the degree of crystallinity.


2018 ◽  
Vol 6 (2) ◽  
pp. 026402 ◽  
Author(s):  
Dipak L Gapale ◽  
Sandeep A Arote ◽  
Balasaheb M Palve ◽  
Sanjaykumar N Dalvi ◽  
Ratan Y Borse

2005 ◽  
Vol 486-487 ◽  
pp. 65-68 ◽  
Author(s):  
Sang Wook Lee ◽  
Hyun Suk Jung ◽  
Dong Wook Kim ◽  
Kug Sun Hong

5, 10, and 30 nm thickness of transparent TiO2 thin films were fabricated using sol-gel process, and the influence of film thickness on the photocatalytic property was investigated. The increase in film thickness was found to enhance the photocatalytic property of the films. Photocatalytic properties of each film were estimated by decomposition of stearic acid. The amount of decomposed stearic acid increased with film thickness (5 - 30 nm). For the case of 30 nm thickness film, the stearic acid was decomposed perfectly in twelve minutes. UV-vis spectra and photocurrents of each film clearly showed that the photoactivities of TiO2 films were related to the amount of absorbed UV light and band gap shift.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 91
Author(s):  
Suresh Gosavi ◽  
Rena Tabei ◽  
Nitish Roy ◽  
Sanjay S. Latthe ◽  
Y. M. Hunge ◽  
...  

Titanium dioxide (TiO2) has been widely used as a catalyst material in different applications such as photocatalysis, solar cells, supercapacitor, and hydrogen production, due to its better chemical stability, high redox potential, wide band gap, and eco-friendly nature. In this work TiO2 thin films have been deposited onto both glass and silicon substrates by the atmospheric pressure plasma jet (APPJ) technique. The structure and morphological properties of TiO2 thin films are studied using different characterization techniques like X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and field emission scanning electron microscopy. XRD study reveals the bronze-phase of TiO2. The XPS study shows the presence of Ti, O, C, and N elements. The FE-SEM study shows the substrate surface is well covered with a nearly round shaped grain of different size. The optical study shows that all the deposited TiO2 thin films exhibit strong absorption in the ultraviolet region. The oleic acid photocatalytic decomposition study demonstrates that the water contact angle decreased from 80.22 to 27.20° under ultraviolet illumination using a TiO2 photocatalyst.


2021 ◽  
pp. 4425-4429
Author(s):  
Rajaa Obayes Abdulsada ◽  
Thamir A.A. Hassan

   In this study, titanium dioxide (TiO2 (are synthesized by sol– gel simple method. Thin films of sol, gel, and sol- gel on relatively flat glass substrates are applied with Spin coating technique with multilayers. The optical and morphological properties (studied using AFM) of TiO2 layers show good properties, with particles diameters less than 4 nm for all prepared samples and have maximum length 62 nm for TiO2 gel thin films of three layers. The results show low roughness values for all films especially for 4 layers sol (8.37nm), which improve the application in dye sensitive solar cell (DSSc)         .  


2011 ◽  
Vol 1352 ◽  
Author(s):  
F. Magnus ◽  
B. Agnarsson ◽  
A. S. Ingason ◽  
K. Leosson ◽  
S. Olafsson ◽  
...  

ABSTRACTThin TiO2 films were grown on Si(001) and SiO2 substrates by reactive dc magnetron sputtering (dcMS) and high power impulse magnetron sputtering (HiPIMS) at temperatures ranging from 300 to 700 °C. Both dcMS and HiPIMS produce polycrystalline rutile TiO2 grains, embedded in an amorphous matrix, despite no postannealing taking place. HiPIMS results in significantly larger grains, approaching 50% of the film thickness at 700 °C. In addition, the surface roughness of HiPIMS-grown films is below 1 nm rms in the temperature range 300–500 °C which is an order of magnitude lower than that of dcMS-grown films. The results show that smooth, rutile TiO2 films can be obtained by HiPIMS at relatively low growth temperatures, without postannealing.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1058
Author(s):  
Ibrahim Dundar ◽  
Arvo Mere ◽  
Valdek Mikli ◽  
Malle Krunks ◽  
Ilona Oja Acik

In this study, TiO2 thin films were deposited by ultrasonic spray pyrolysis from solutions with concentrations of 0.1 and 0.2 M. The deposition temperature was adjusted at 350 °C and all samples were annealed at 500 °C for 1 h in air. The thickness of TiO2 films was changed in the range of 50 to ca. 800 nm by varying the number of spray cycles from 1 to 21 and the solution concentration. The results showed that the mean crystallite size of the anatase structure, the surface roughness, and light absorption increased with the film thickness. The effect of film thickness on the photocatalytic activity was investigated with the photodegradation of stearic acid under UV-A irradiation. The optimal thickness of TiO2 films fabricated by ultrasonic spray pyrolysis for photocatalytic self-cleaning applications was in the range of 170–230 nm, indicating a ca. 2.6 times-higher photocatalytic self-cleaning activity compared to the reference sample, Pilkington ActivTM. The photocatalytic results showed that the 190 nm-thick TiO2 film deposited from the 0.1 M solution applying seven spray cycles exhibited the finest grain structure and maximum photocatalytic activity, leading to 94% of stearic acid degradation in 180 min under UV-A light with the reaction rate constant k = 0.01648 min−1.


Sign in / Sign up

Export Citation Format

Share Document