scholarly journals Zucchini lineages with levels of resistance to ZYMV and SqMV viruses

Author(s):  
Igor Forigo Beloti ◽  
Gabriel Mascarenhas Maciel ◽  
Igor Matheus Alves ◽  
Lucas Medeiros Pereira ◽  
Ernane Miranda Lemes

Zucchini (Cucurbita pepo L.) is a horticultural plant species of great socioeconomic value in tropical countries such as Colombia and Brazil. The production of zucchini is qualitatively and quantitatively affected by many diseases, especially viruses belonging to the Potyvirus (Zucchini yellow mosaic virus - ZYMV) and Comovirus (Squash mosaic virus - SqMV) groups. The primary strategy to reduce the spread of potentially damaging plant viruses is the development of genotypes with genetic tolerance; however, there are not many zucchini genotypes with multiple tolerance. Therefore, this study evaluated 66 zucchini genotypes to find sources of tolerance to the ZYMV and SqMV viruses. This experiment was conducted in a completely randomized design using genotypes from the germplasm bank of the Federal University of Uberlândia, including the genotypes: Emanuela (common commercial genotype) ‘Tronco Caserta’ (susceptible genotype) and PX 13067051 (resistant genotype). Leaf extracts containing viral particles were used as inoculant, and the distribution of grades of tolerance was recorded at the seedling stage. The lineages UFU-C×UFU-A#18#3;1, UFU-C×UFU-F#19#11;3, UFU-F#4#9;1, and UFU-D×UFU-F#7#21;1 and the Emanuela cultivar are alternatives for the production of new zucchini genotypes or hybrids with tolerance to the viruses ZYMV and SqMV. More severe symptoms were observed, as well as a larger number of susceptible genotypes for the ZYMV virus, indicating that this virus has great potential for causing damage and losses to zucchini crops.

Plant Disease ◽  
2007 ◽  
Vol 91 (5) ◽  
pp. 639-639 ◽  
Author(s):  
H. Pospieszny ◽  
B. Hasiów ◽  
N. Borodynko

Zucchini yellow mosaic virus (ZYMV) is a member of the Potyvirus genus in the Potyviridae family, the largest group of plant viruses. Different isolates of this virus have been found in infected cucurbits throughout the world, including localities in Europe, America, Australia, and Asia. In August 2005, mosaic and yellowing of leaves, as well as yellow spots on green fruits, were observed on zucchini (Cucurbita pepo cv. giromontiina) growing in commercial fields in the Kujawsko-Pomorskie Region of Poland. Flexuous virus particles (~750 nm long), typical of potyviruses, were observed in leaf-dip preparations from symptomatic zucchini plants. The virus in the sap from symptomatic plants was mechanically transmitted and systemic infections were produced on Citrullus lanatus, Cucumis melo, Cucumis sativus, C. pepo cvs. giromontiina and patissoniana, C. maxima, and Nicotiana benthamiana. Severe symptoms such as severe malformation of leaves and stunting of plants were observed on zucchini plants (cv. giromontiina) infected mechanically with the virus and grown in the greenhouse. Double-antibody sandwich (DAS)-ELISA using an anti-ZYMV polyclonal antiserum (AS-0234; DSMZ, Braunschweig, Germany) identified the presence of ZYMV in mechanically infected C. pepo cv. giromontiina and N. benthamiana plants. Subsequently, a reverse transcription (RT)-PCR using a universal primer, Sprimer, designed from the consensus sequences that code for the conserved sequence GNNSGQP in the NIb region of Potyviridae family members and the M4 primer was performed (1). The 1740-bp PCR fragments were cloned into the pGEM-T vector (Promega, Madison, WI) and three randomly selected clones were sequenced on an ABI automatic sequencer. An 837-bp sequence representing the full length coat protein gene (GenBank Accession No. EF178505) was compared with homologous sequences from other ZYMV isolates using BioEdit and Mega 3.1 softwares. Genetic distances were calculated by Kimura's two-parameter method (2). Surprisingly, the Polish ZYMV isolate (ZYMV-Zug) was more closely related to ZYMV isolates from Asia than those from Europe. Pairwise comparisons of ZYMV-Zug with several other European ZYMV isolates (GenBank Accession Nos. DQ645729, AJ420020, AJ459956, AJ420014, AJ420019, DQ124239, and AJ420018) indicated an 81 to 82% nucleotide and 91 to 92% amino acid identity, while there was a 94% nucleotide and 99% amino acid identity with the Shanxi (GenBank Accession No. AY074808) and Shandong isolates (GenBank Accession No. AF513552) from China. References: (1) J. Chen et al. Arch. Virol. 146:757, 2001. (2) S. Kumar et al. Brie. Bioinform. 5:150, 2004.


2007 ◽  
Vol 97 (3) ◽  
pp. 287-296 ◽  
Author(s):  
Shih-Shun Lin ◽  
Hui-Wen Wu ◽  
Fuh-Jyh Jan ◽  
Roger F. Hou ◽  
Shyi-Dong Yeh

A nonpathogenic mild strain is essential for control of plant viruses by cross protection. Three amino acid changes, Arg180→Ile180 (GA mutation), Phe205→Leu205 (GB mutation), and Glu396→Asn396 (GC mutation), of the conserved motifs of the helper component-protease (HC-Pro) of a severe strain TW-TN3 of Zucchini yellow mosaic virus (ZYMV), a member of the genus Potyvirus, were generated from an infectious cDNA clone that carried a green fluorescent protein reporter. The infectivity of individual mutants containing single, double, or triple mutations was assayed on local and systemic hosts. On Chenopodium quinoa plants, the GB mutant induced necrotic lesions; the GA, GC, and GBC mutants induced chlorotic spots; and the GAB and GAC mutants induced local infection only visualized by fluorescence microscopy. On squash plants, the GA, GB, GC, and GBC mutants caused milder mosaic; the GAC mutant induced slight leaf mottling followed by recovering; and the GAB mutant did not induce conspicuous symptoms. Also, the GAC mutant, but not the GAB mutant, conferred complete cross protection against the parental virus carrying a mite allergen as a reporter. When tested on transgene-silenced transgenic squash, the ability of posttranscriptional gene silencing suppression of the mutated HC-Pro of GAC was not significantly affected. We concluded that the mutations of the HC-Pro of ZYMV reduce the degrees of pathogenicity on squash and also abolish the ability for eliciting the hypersensitive reaction on C. quinoa, and that the mutant GAC is a useful mild strain for cross protection.


2021 ◽  
Vol 39 (2) ◽  
pp. 146-154
Author(s):  
Marcos Vinicius M Pereira ◽  
Maria Amélia V Alexandre ◽  
Alexandre Levi R Chaves ◽  
Ana Cláudia O de Souza ◽  
Luís Carlos Bernacci ◽  
...  

ABSTRACT In Brazil, zucchini (Cucurbita pepo) is a socioeconomically important vegetable affected by damage caused primarily by zucchini yellow mosaic virus (ZYMV). Although the occurrence of cucumber mosaic virus (CMV) is less frequent, in C. pepo ‘Caserta’ plants it can cause symptoms such as mottle, mosaic, leaf and fruit distortion, as well as reduced plant development. To minimize the damage, the most widely used management technique is the preventive, albeit inefficient, application of insecticides, aimed at controlling aphids, the vectors of this virus. Thus, the search for more effective and less environmentally harmful control methods has been the target of investigations. The purpose of the present study was to assess the action of the extracts of four native Caryophyllales species, as inhibitors of infection by CMV and ZYMV in C. pepo, in addition to evaluating the possible induced resistance in this species. Fresh leaf extracts (LEs) of Guapira opposita, Pisonia ambigua (Nyctaginaceae), Gallesia integrifolia and Seguieria langsdorffii (Phytolaccaceae), previously assessed in the tobacco mosaic virus / Nicotiana glutinosa pathosystem, were submitted to progressive dilutions sprayed on cotyledonary C. pepo leaves 30 min before inoculation with CMV and ZYMV. Leaf extracts of G. integrifolia did not induce inhibition in any of the pathosystems assessed. Guapira opposita LEs inhibited the infection of plants inoculated with ZYMV below 50% but inhibited CMV infection by 70% at a concentration of 1:40. Given that leaf extracts of P. ambigua and S. langsdorffii induced high percentage inhibition, evident in the number of asymptomatic plants and confirmed by serological tests, these species were selected to assess induced resistance in pre-treatment experiments. The LEs were efficient in inhibiting ZYMV and CMV infection in C. pepo when applied up to 48 h before inoculation. The LEs of S. langsdorffii and G. opposita, also tested for this system, were efficient when applied up to 72 h before CMV inoculation. The LEs can be prepared from dry leaves and maintained at -20°C for at least three years, conserving their inhibitory activity. These results expand the possibilities for producers and consumers alike in the sustainable management of the main zucchini viruses, without damaging the environment.


2011 ◽  
Vol 26 (4) ◽  
pp. 325-336 ◽  
Author(s):  
Ana Vucurovic ◽  
Aleksandra Bulajic ◽  
Ivana Stankovic ◽  
Danijela Ristic ◽  
Janos Berenji ◽  
...  

Cucumber mosaic virus (CMV) is considered one of the most economically important plant viruses and has a worldwide distribution and a very wide host range including plants from family Cucurbitaceae. In Serbia, on cucurbits CMV was detected in single and mixed infections with Zucchini yellow mosaic virus (ZYMV) and Watermelon mosaic virus (WMV). Viruses, including CMV, are constantly present in cucurbit crops, but their frequency changes by year and locality. Surveys and sample collections were conducted in cucurbit crops in the period from 2008 to 2009 at 15 localities in Vojvodina province, and sample testing was carried out using the DAS-ELISA method and commercially available antisera for six economically most important cucurbit viruses. In 2008, a total of 51 samples were collected from 13 cucurbit crops of oilseed pumpkin Olinka variety, squash, and bottle gourd and CMV was detected in a total of 55% of tested samples with symptoms of viral infection. The most common infectious type was mixed infection with ZYMV and WMV (35.3%), and then mixed infection with ZYMV (17.7%) and WMV (2%). A total of 599 symptomatic samples of oilseed pumpkin Olinka variety, zucchini squash varieties Beogradska and Tosca, squash, and winter squash were collected in 15 cucurbits crops in 2009. CMV was present in 4.4% of total collected samples, in single infections in 1.3%, and in mixed with WMV or ZYMV in 1.3%, and 1.8%. Five CMV isolates were obtained by mechanical inoculations of N. glutinosa and one of them was selected for further biological characterization. Test plants which were described to be hosts of CMV expressed symptoms characteristic for those caused by CMV after inoculations by isolate 115-08. CMV specific primers Au1u/Au2d were used to amplify an 850 bp fragment using RT-PCR method. Amplified fragment encodes the entire viral coat protein (CP) gene and partial 5? and 3? UTRs of two selected CMV isolates. Amplified fragments were sequenced and deposited in the NCBI, where they were assigned accession numbers, HM065510 (115-08) and HM065509 (151-08). The sequences of CMV isolates from Serbia shared the highest nucleotide and amino acid identity with isolates from subgroup IA, from 99.5 to 97.4% and 99.1 to 97.4%, and the lowest identities were with the subgroup II isolates from 66.9 to 64, 5%, from 75.8 to 74.1%.


2010 ◽  
Vol 2 (1) ◽  
pp. 55-57 ◽  
Author(s):  
Ercan EKBIC ◽  
Hakan FIDAN ◽  
Mehtap YILDIZ ◽  
Kazim ABAK

In the Çukurova University Department of Horticulture more than 350 melon accessions were collected from different ecological parts of Turkey which is located on the secondary genetic diversification center of this crop, and their characterization studies are near completion. Furthermore, evaluation studies of these materials have started. In the present study 67 melon accessions, sampled from this germplasm, were tested for resistance to zucchini yellow mosaic virus (ZYMV), Cucumber mosaic virus (CMV) and watermelon mosaic virus (WMV). After resistance tests made by mechanical inoculation, four accessions (‘CU 100’, ‘CU 287’, ‘CU 305’ and ‘CU 328’) were found resistant to ZYMV and three accessions (‘CU 305’, ‘C 264’, and ‘C 276’) to WMV. No resistant genotype was found to CMV.


2011 ◽  
Vol 2 (1) ◽  
pp. 6
Author(s):  
Somayeh Safara ◽  
Jamshid Hayati ◽  
Mohammad Roayaei Ardakani ◽  
Mina Kohi Habibi

ZYMV is one of the most important plant viruses that cause economical damage in cucurbits. The symptoms of ZYMV in different cucurbits include stunting, yellowing, mottling, severe mosaic, leaf and fruit deformation, blistering and shoe string. Investigation on occurrence of this virus, in Khuzestan province was carried out in November 2009, April and May 2010 by collecting cucurbits samples from different cucurbits fields. After DAS-ELISA test, ZYMV was maintained in squash. Then total RNA were extracted and were tested by RT-PCR. Using RT-PCR, fragments belonging to N-terminal of coat protein and C-terminal of nuclear inclusion bodies were replicated. PCR product for investigation of replication was loaded in 1% agarose gel. From seven regions in Khuzestan, 175 leaf samples showing different symptoms (yellowing, mosaic, deformation and blistering) were collected. Seventy one samples out of total samples (175 samples) showed ZYMV infection. Occurrence of Zucchini Yellow Mosaic Virus in Khuzestan province was confirmed, using serological and RT-PCR tests. Infection of ZYMV in Khuzestan province (40.5%) is higher than the average of Iran’s infection (38%). This article is first report of occurrence ZYMV in different regions of Khuzestan province except Dezful.


2019 ◽  
pp. 1409-1415
Author(s):  
Gerffeson Thiago Mota de Almeida Silva ◽  
José Albérsio de Araújo Lima ◽  
Graziela da Silva Barbosa ◽  
Ênio Gomes Flôr Souza ◽  
Giordanio Bruno Silva Oliveira ◽  
...  

We used 19 genotypes (plus controls) of watermelon from the collection of Cucurbitaceas germplasm of the Federal Rural University of the Semi-Arid to select watermelon plants resistant to Papaya ringspot virus “type Watermelon” (PRSV-W), Watermelon mosaic virus (WMV), and Zucchini yellow mosaic virus (ZYMV). Twenty individual plants were tested for each genotype/accession. Three controls were also used (3 genotypes). Evaluations were performed under greenhouse in a completely randomized design with five replications. The first inoculation was performed on the seedlings before the appearance of the first definitive leaf. From each accession (genotype) 20 different individual plants were inoculated with the three viruses. The inoculum was prepared by infected leaf tissue. The viral suspension and gauze soaked in extract were wiped on the surface of the leaves. Ten days later, the symptom assessment was performed. Subsequently, the plants were individually tested against the specific viruses using indirect ELISA. ELISA negative plants were submitted to a second inoculation under greenhouse, as described for the first inoculation. Ten days after new inoculation, new symptomatological evaluations and serological tests were performed to confirm the resistance of the plants. Plants that were negative by ELISA were tested by RT-PCR for confirmation of resistance. Resistance to the three viruses was verified individually in several tested genotypes. We found resistance to the three viruses tested, but in different plant individuals, where 16 individual plants were WMV-resistant, 26 PRSV-W resistant and 30 ZYMV-resistant. These plants can be used to develop homozygous lines for resistance to the virus studied.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1922
Author(s):  
Ramila Mammadova ◽  
Immacolata Fiume ◽  
Ramesh Bokka ◽  
Veronika Kralj-Iglič ◽  
Darja Božič ◽  
...  

Plant-derived nanovesicles (NVs) have attracted interest due to their anti-inflammatory, anticancer and antioxidative properties and their efficient uptake by human intestinal epithelial cells. Previously we showed that tomato (Solanum lycopersicum L.) fruit is one of the interesting plant resources from which NVs can be obtained at a high yield. In the course of the isolation of NVs from different batches of tomatoes, using the established differential ultracentrifugation or size-exclusion chromatography methods, we occasionally observed the co-isolation of viral particles. Density gradient ultracentrifugation (gUC), using sucrose or iodixanol gradient materials, turned out to be efficient in the separation of NVs from the viral particles. We applied cryogenic transmission electron microscopy (cryo-TEM), scanning electron microscopy (SEM) for the morphological assessment and LC–MS/MS-based proteomics for the protein identification of the gradient fractions. Cryo-TEM showed that a low-density gUC fraction was enriched in membrane-enclosed NVs, while the high-density fractions were rich in rod-shaped objects. Mass spectrometry–based proteomic analysis identified capsid proteins of tomato brown rugose fruit virus, tomato mosaic virus and tomato mottle mosaic virus. In another batch of tomatoes, we isolated tomato spotted wilt virus, potato virus Y and southern tomato virus in the vesicle sample. Our results show the frequent co-isolation of plant viruses with NVs and the utility of the combination of cryo-TEM, SEM and proteomics in the detection of possible viral contamination.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anthony Gobert ◽  
Yifat Quan ◽  
Mathilde Arrivé ◽  
Florent Waltz ◽  
Nathalie Da Silva ◽  
...  

AbstractPlant viruses cause massive crop yield loss worldwide. Most plant viruses are RNA viruses, many of which contain a functional tRNA-like structure. RNase P has the enzymatic activity to catalyze the 5′ maturation of precursor tRNAs. It is also able to cleave tRNA-like structures. However, RNase P enzymes only accumulate in the nucleus, mitochondria, and chloroplasts rather than cytosol where virus replication takes place. Here, we report a biotechnology strategy based on the re-localization of plant protein-only RNase P to the cytosol (CytoRP) to target plant viruses tRNA-like structures and thus hamper virus replication. We demonstrate the cytosol localization of protein-only RNase P in Arabidopsis protoplasts. In addition, we provide in vitro evidences for CytoRP to cleave turnip yellow mosaic virus and oilseed rape mosaic virus. However, we observe varied in vivo results. The possible reasons have been discussed. Overall, the results provided here show the potential of using CytoRP for combating some plant viral diseases.


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 53
Author(s):  
Vivek Khanal ◽  
Harrington Wells ◽  
Akhtar Ali

Field information about viruses infecting crops is fundamental for understanding the severity of the effects they cause in plants. To determine the status of cucurbit viruses, surveys were conducted for three consecutive years (2016–2018) in different agricultural districts of Oklahoma. A total of 1331 leaf samples from >90 fields were randomly collected from both symptomatic and asymptomatic cucurbit plants across 11 counties. All samples were tested with the dot-immunobinding assay (DIBA) against the antisera of 10 known viruses. Samples infected with papaya ringspot virus (PRSV-W), watermelon mosaic virus (WMV), zucchini yellow mosaic virus (ZYMV), and cucurbit aphid-borne-yellows virus (CABYV) were also tested by RT-PCR. Of the 10 viruses, PRSV-W was the most widespread, with an overall prevalence of 59.1%, present in all 11 counties, followed by ZYMV (27.6%), in 10 counties, and WMV (20.7%), in seven counties, while the remaining viruses were present sporadically with low incidence. Approximately 42% of the infected samples were positive, with more than one virus indicating a high proportion of mixed infections. CABYV was detected for the first time in Oklahoma, and the phylogenetic analysis of the first complete genome sequence of a CABYV isolate (BL-4) from the US showed a close relationship with Asian isolates.


Sign in / Sign up

Export Citation Format

Share Document