scholarly journals Encapsulation of Polyphenols from Lycium barbarum Leaves into Liposomes as a Strategy to Improve Their Delivery

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1938
Author(s):  
Ramona-Daniela Păvăloiu ◽  
Fawzia Sha’at ◽  
Georgeta Neagu ◽  
Mihaela Deaconu ◽  
Corina Bubueanu ◽  
...  

This study is focused on the encapsulation of polyphenols from Lycium barbarum leaves into liposomes as a strategy to improve their delivery. Liposomes loaded with Lycium barbarum leaves extract were obtained and characterized for particle size, polydispersity, entrapment efficiency, and stability. Liposomes presented entrapment efficiency higher than 75%, nanometric particle size, narrow polydispersity, and good stability over three months at 4 °C. The liposomes containing Lycium barbarum offered a slower release of polyphenols with attenuated burst effect compared with the dissolution of free Lycium barbarum extract in phosphate buffer solution at pH 7.4. Moreover, an in vitro pretreatment of 24 h with loaded liposomes showed a cytoprotective effect against H2O2-induced cytotoxicity on L-929 mouse fibroblasts cells. These preliminary findings imply that liposomes could be successfully employed as carriers for polyphenols in pharmaceutical applications.

Author(s):  
Luma Safa el-din Al-Hassnaui

Danazol is a synthetic steroid used for endometriosis treatment, haslow bioavailability as it is practically insoluble in water. This study has been carried out to prepare and characterize danazol nanoparticles by nanoprecipitation method at a different polymer to drug ratios of 0.5:1,1:1,2:1 and 3:1 using different polymers of CMC-30 and various grades of HPMC and PVP,as stabilizers. Variables that might affect the particle size as polymer type,polymer to drug ratio,temperature of precipitation,addition rate of danazol solution,volume ratio,time of stirring,concentrationof drug,have been investigated. The particle size of the prepared formulas has been in the nano-sized except those using CMC and the best formula has beenF20 at a polymer to drug ratio of0.5:1 which has given the smallest particle sizeof 33nm.The investigations of the drug–stabilizer compatibility havebeen studied by FTIR and DSC,crystalline state by XRD,size,and shape of nanoparticles by FESEM and the results showed that there has been no interaction between the danazol and stabilizer and there has been a partial conversion of danazol from crystalline to an amorphous state with a size below 100nm. Most of the studied factors havebeen found affect the particle size of the nanoparticles.The Entrapment efficiency has been (91.3% ± 0.4) in the (F20). The solubility study revealed that 6.75,4.97 and 5.1 folds increased of solubility of danazol for nanoparticles than that for raw in distilled water,0.1N HCl and in phosphate buffer of pH 6.8.The simple capsule has been prepared by incorporation of freeze-dried of F20 with lactose as a filler and the in vitro dissolution study has been conducted using 0.1N HCl (pH 1.2) with 2% w/v Brij-35,phosphate buffer solution(pH 6.8) with 2% w/v Brij-35as dissolution media. Within 30 minutes,100% of the danazol has been released from the nanoparticle capsule in both dissolution media compared to the raw and physical blend capsules as controls havebeen nearly complete in 120 minutes.One can conclude that Antisolvent method is an easy,efficient method to prepare danazol nanoparticles with an intense effect on solubility and faster in vitro dissolution rate than raw drug and its physical blend with stabilizer.


2013 ◽  
Vol 785-786 ◽  
pp. 493-497
Author(s):  
Yu Ping Li ◽  
Li Zhen Sun ◽  
Xiang Yuan Xiong ◽  
Zi Ling Li ◽  
Ting Kang Xing ◽  
...  

In the present study, controlled release characteristics of new nanosized PLA-Pluronic-PLA block copolymer vesicles comprising of amphiphilic poly (lactic acid) (PLA) and Pluronic block copolymers (PEO-PPO-PEO) have been evaluated as an oral insulin carrier. The mean size of vesicles was 78 nm for PLA-F127-PLA and 165 nm for PLA-P85-PLA copolymer. The mean insulin entrapment efficiency was 59.6% for PLA-P85-PLA and 26.4% for PLA-F127-PLA. The in vitro release characteristics of insulin from vesicles exhibited an initial burst in the range of pH 1.2-7.4 dissolution mediums. The presence of PLA-Pluronic-PLA vesicles improved the stability of insulin in the gastrointestinal fluids than that of the phosphate buffer solution (PBS) of insulin. More importantly, the released insulin from the vesicles maintained their biological activity. The results from this studies demonstrated that biodegradable PLA-Pluronic-PLA can self-assemble with insulin, form insulin-encapsulated vesicles, and is good carrier materials for oral insulin/protein delivery.


2021 ◽  
Vol 89 (2) ◽  
pp. 25
Author(s):  
Adejumoke Lara Ajiboye ◽  
Uttom Nandi ◽  
Martin Galli ◽  
Vivek Trivedi

The aim of this study was to understand the effect of high shear homogenization (HSH) and ultrasonication (US) on the physicochemical properties of blank and olanzapine loaded nanostructured lipid carriers (NLCs) along with their drug loading potential and drug release profiles from formulated particles. NLCs were prepared with different ratios of Compritol and Miglyol as the solid and liquid lipids, respectively, under changing HSH and US times between 0 to 15 minutes. The surfactants (Poloxamer 188 (P188) and tween 80) and the drug content was kept constant in all formulations. The prepared NLCs were evaluated for particle size, polydispersity index, zeta potential, drug crystallinity and chemical interactions between lipids and OLZ. The in-vitro drug release was performed using dialysis tube method in phosphate buffer solution (PBS) at pH 7.4. The formulated NLCs were negatively charged, spherically shaped and monodisperse, with particle sizes ranging from 112 to 191 nm. There was a significant influence of US time on the preparation of NLCs in comparison to HSH, where a significant reduction in the mean particle diameter was seen after 5 min of sonication. An increase of Miglyol content in NLCs led to an increase in particle size. In general, application of US led to decrease in particle size after HSH but an increase in particle diameter of low Miglyol containing preparation was also observed with longer sonication time. OLZ was successfully encapsulated in the NLCs and a total release of 89% was achieved in 24 hours in PBS at pH 7.4.


2011 ◽  
Vol 295-297 ◽  
pp. 103-106
Author(s):  
Zheng Guo ◽  
Jin Jing Chen

In this paper, Poly(lactide-co-glycolide) (PGLA) fibers were treated with the plasma. The surface, tensile strength, and contact angle with water of the PGLA fiber were investigated. The results showed that the PGLA fiber after treatment possessed more rough surface and smaller contact angle with water compared with the untreated fiber, but the tensile strength of fiber after treatment was not significantly diffrent form the fiber before treatment. In addition, both the treated and untreated PGA fibers were placed in phosphate buffer solution (PBS) (pH=7.4) at 37 °C up to 2.5 weeks to investigate the effect of plasma treatment on the degradation in vitro. Changes in tensile strength during degradation was investigated. The results showed that the treated PGLA fiber degraded faster compared with the untreated fiber.


2011 ◽  
Vol 236-238 ◽  
pp. 2387-2390
Author(s):  
He Ping Li ◽  
Tao Yu ◽  
Shao Peng Liu ◽  
Shan Li ◽  
Long Qin

In the article, a new thermosensitive 5-Fu-ACS hydrogel was prepared as control release drug carrier, and its in vitro release capability in phosphate buffer solution (PBS) were determined by UV spectrum


2011 ◽  
Vol 236-238 ◽  
pp. 2207-2210 ◽  
Author(s):  
Wei Guang Zhang ◽  
Ji Hong Liang ◽  
You Jie Cai

This text adopted the thin film method to prepare the vitamin E liposomes, the influence of proportion of components in vitamin E liposomes, and experiment condition on the envelopment rate were studied. The results showed that the optimum condition of the making technology of the vitamin E liposomes was:temperature42°C,m(vitamin E):m(lecithin)=1:25,m(vitamin E) :m(the cholesterol )=1:3, m(vitamin E) :m(the octadecylamine )=5:1, the phosphate buffer solution was 20 ml. In this case, the entrapment efficiency of the vitamin E liposomes was 76% .This method was accurate, and applicable for the preparation of vitamin E liposomes, and the property of it was very stable.


Author(s):  
Yan Mei Chen ◽  
Ting Fei Xi ◽  
Yu Feng Zheng ◽  
Liang Zhou ◽  
Yi Zao Wan

Nano-bacterial cellulose (nBC), secreted by Acetobacter xylinum, is expected to have potential applications in tissue engineering. In this paper, the in-vitro degradation performance and the corresponding mechanism of nBC immersed in phosphate buffer solution (PBS) for different time periods was investigated. The pH value variation of solution, material degradation, and the swelling and structural changes of nBC was analysed successively. The results indicate that water molecules attack the exposed nBC fibrils, weakening the bonding strength of inter- and intra-molecular chains and disconnecting partial C-O-C bonds. The disconnection of C-O-C bonds is considered the primary reason for the degradation of nBC large molecular chains after nBC is immersed in PBS. The present work is instructive for controlling the in-vivo degradation performance of nBC acting as bone tissue engineered scaffold materials.


Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 56 ◽  
Author(s):  
Ramona-Daniela Păvăloiu ◽  
Fawzia Sha’at ◽  
Corina Bubueanu ◽  
Mihaela Deaconu ◽  
Georgeta Neagu ◽  
...  

The paper deals with the preparation and characterisation of hydroalcoholic polyphenolic extract from Sambucus ebulus (SE) leaves that was further loaded into three-types of lipid vesicles: liposomes, transfersomes, and ethosomes, to improve its bioavailability and achieve an optimum pharmacological effect. For Sambucus ebulus L.-loaded lipid vesicles, the entrapment efficiency, particle size, polydispersity index and stability were determined. All prepared lipid vesicles showed a good entrapment efficiency, in the range of 75–85%, nanometric size, low polydispersity indexes, and good stability over three months at 4 °C. The in vitro polyphenols released from lipid vehicles demonstrated slower kinetics when compared to the free extract dissolution in phosphate buffer solution at pH 7.4. Either free SE extract or SE extract loaded into lipid vesicles demonstrated a cytoprotective effect, even at low concentration, 5 ug/mL, against hydrogen peroxide-induced toxicity on L-929 mouse fibroblasts’ cell lines. However, the cytoprotective effect depended on the time of the cells pre-treatment with SE extract before exposure to a hydrogen peroxide solution of 50 mM concentration, requiring at least 12 h of pre-treatment with polyphenols with radical scavenging capacity.


Sign in / Sign up

Export Citation Format

Share Document