scholarly journals Active Modulating the Intensity of Bifocal Metalens with Electrically Tunable Barium Titanate (BTO) Nanofins

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2023
Author(s):  
Shuai Qin ◽  
Hui Huang ◽  
Kaiqian Jie ◽  
Sirui Zeng ◽  
Li Chen ◽  
...  

The multifocal metalens with an adjustable intensity has great potential in many applications such as the multi-imaging system, but it is less studied. In this paper, by combining the electro-optic material barium titanate (BTO) with the Pancharatnam-Berry phase, an electrically modulated bifocal metalens in a visible light band is innovatively proposed. Due to the electro-optic effect, we can control the refractive index of the BTO nanofins to vary between 2.4 and 3.07 by applying different voltages (0–60 V). Thus, the method of modulating the intensity ratio of the two focal points is applying an electric field. It is different from using phase change materials or changing the ellipticity of incident light, the strategies proposed in previous studies. Moreover, when the applied voltage is 0 V or 60 V, the bifocal metalens becomes a single focal metalens with different focal lengths, and the full width at half maximum of each focal point is close to the diffraction limit. It has great potential in applications of optical storage, communication and imaging systems.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sagie Asraf ◽  
Moti Fridman ◽  
Zeev Zalevsky

Abstract In this paper we present a new technique for a fiber-based temporal super resolving system allowing to improve the resolution of a temporal imaging system. The proposed super resolving concept is based upon translating the field of view multiplexing method that is used to increase resolution in spatial imaging systems from the spatial domain to the temporal domain. In this paper, an optical realization of our proposed system is presented, using optical fibers and electro-optic modulators. In addition, we show how one can apply this method using low-rate electronics for the required modulation. We also show simulation results that demonstrate the high resolution accepted in our method compares to the basic temporal imaging system. Experimental results which demonstrate resolution improvement by a factor of 1.5 based on the proposed method are presented together with an additional experiment that shows the ability to generate the desired modulation with low rate electronics.


2021 ◽  
pp. 000370282110133
Author(s):  
Rohit Bhargava ◽  
Yamuna Dilip Phal ◽  
Kevin Yeh

Discrete frequency infrared (DFIR) chemical imaging is transforming the practice of microspectroscopy by enabling a diversity of instrumentation and new measurement capabilities. While a variety of hardware implementations have been realized, considerations in the design of all-IR microscopes have not yet been compiled. Here we describe the evolution of IR microscopes, provide rationales for design choices, and the major considerations for each optical component that together comprise an imaging system. We analyze design choices in illustrative examples that use these components to optimize performance, under their particular constraints. We then summarize a framework to assess the factors that determine an instrument’s performance mathematically. Finally, we summarize the design and analysis approach by enumerating performance figures of merit for spectroscopic imaging data that can be used to evaluate the capabilities of imaging systems or suitability for specific intended applications. Together, the presented concepts and examples should aid in understanding available instrument configurations, while guiding innovations in design of the next generation of IR chemical imaging spectrometers.


Author(s):  
Shourya Dutta-Gupta ◽  
Nima Dabidian ◽  
Iskandar Kholmanov ◽  
Mikhail A. Belkin ◽  
Gennady Shvets

Plasmonic metasurfaces have been employed for moulding the flow of transmitted and reflected light, thereby enabling numerous applications that benefit from their ultra-thin sub-wavelength format. Their appeal is further enhanced by the incorporation of active electro-optic elements, paving the way for dynamic control of light's properties. In this paper, we realize a dynamic polarization state generator using a graphene-integrated anisotropic metasurface (GIAM) that converts the linear polarization of the incident light into an elliptical one. This is accomplished by using an anisotropic metasurface with two principal polarization axes, one of which possesses a Fano-type resonance. A gate-controlled single-layer graphene integrated with the metasurface was employed as an electro-optic element controlling the phase and intensity of light polarized along the resonant axis of the GIAM. When the incident light is polarized at an angle to the resonant axis of the metasurface, the ellipticity of the reflected light can be dynamically controlled by the application of a gate voltage. Thus accomplished dynamic polarization control is experimentally demonstrated and characterized by measuring the Stokes polarization parameters. Large changes of the ellipticity and the tilt angle of the polarization ellipse are observed. Our measurements show that the tilt angle can be changed from positive values through zero to negative values while keeping the ellipticity constant, potentially paving the way to rapid ellipsometry and other characterization techniques requiring fast polarization shifting. This article is part of the themed issue ‘New horizons for nanophotonics’.


2009 ◽  
Vol 19 (02) ◽  
pp. 545-555 ◽  
Author(s):  
F. TRAMONTANA ◽  
L. GARDINI ◽  
D. FOURNIER-PRUNARET ◽  
P. CHARGE

We consider the class of two-dimensional maps of the plane for which there exists a whole one-dimensional singular set (for example, a straight line) that is mapped into one point, called a "knot point" of the map. The special character of this kind of point has been already observed in maps of this class with at least one of the inverses having a vanishing denominator. In that framework, a knot is the so-called focal point of the inverse map (it is the same point). In this paper, we show that knots may also exist in other families of maps, not related to an inverse having values going to infinity. Some particular properties related to focal points persist, such as the existence of a "point to slope" correspondence between the points of the singular line and the slopes in the knot, lobes issuing from the knot point and loops in infinitely many points of an attracting set or in invariant stable and unstable sets.


Author(s):  
С.А. Королев ◽  
А.В. Горюнов ◽  
В.В. Паршин

A new approach to the creation of millimeter-wave radio imaging systems is proposed. This approach is based on the use of an array receiver consisting of a densely packed (pixel size - 4 mm) array of planar mixers located in the focal plane of a quasi-optical objective, with application of the frequency-modulated continuous-wave radar technique. It has been demonstrated that the implementation of the heterodyne type of reception makes it possible to increase the distance range of the array radio imaging system up to ~ 100 m while maintaining the angular resolution at the previous level.


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 699 ◽  
Author(s):  
Yaoyao Liang ◽  
Zhongchao Wei ◽  
Jianping Guo ◽  
Faqiang Wang ◽  
Hongyun Meng ◽  
...  

A key goal of metalens research is to achieve wavefront shaping of light using optical elements with thicknesses on the order of the wavelength. Here we demonstrate ultrathin highly efficient crystalline titanium dioxide metalenses at blue, green, and red wavelengths (λ0 = 453 nm, 532 nm, and 633 nm, respectively) based on symmetric slab waveguide theory. These metalenses are less than 488 nm-thick and capable of focusing incident light into very symmetric diffraction-limited spots with strehl ratio and efficiency as high as 0.96 and 83%, respectively. Further quantitative characterizations about metalenses’ peak focusing intensities and focal spot sizes show good agreement with theoretical calculation. Besides, the metalenses suffer only about 10% chromatic deviation from the ideal spots in visible spectrum. In contrast with Pancharatnam–Berry phase mechanism, which limit their incident light at circular polarization, the proposed method enables metalenses polarization-insensitive to incident light.


2013 ◽  
Vol 475-476 ◽  
pp. 259-262
Author(s):  
Fei Wang

Range accuracy is one of the key parameters for 3D laser imaging systems. A gain-modulated 3D imaging system employing multi-pulse accumulation method is proposed to improve the range accuracy performance. Experiments results show that the range error decreases exponentially with the number of accumulated laser echoes.


2019 ◽  
Vol 110 ◽  
pp. 219-226
Author(s):  
Mengnan Sun ◽  
Bing Zheng ◽  
Bo Peng ◽  
Yan Wang ◽  
Haiyong Zheng
Keyword(s):  

Author(s):  
Jocelyn Keillor ◽  
Karen J. Hodges ◽  
Michael Perlin ◽  
Nada Ivanovic ◽  
J.G. Hollands

Optical imaging systems have the potential to dramatically change the task of a search and rescue technician. An important difference between the traditional process of “looking out the window” and search conducted with the aid of an optical imaging system is that in the case of imaging systems the frame of reference for the viewed display is de-coupled from the technician's frame of reference. We examined the ability of a moving-map display that recorded the locations of designated targets to support geographic orientation in operators with and without knowledge of the modeled terrain. Participants who did not have knowledge of the terrain benefited from the moving map, as when it was present they were less likely to re-identify targets that they had already viewed, whereas those who were already familiar with the terrain model showed no benefit from this manipulation. Both groups had difficulty localizing targets on a map following flight, and the two groups did not differ in their ability to initially detect targets using the system.


1975 ◽  
Author(s):  
A. E. Stewart

This paper discusses the development of a real-time high energy x-ray imaging system for use in dynamic fluoroscopy of aero gas turbines. In order to cover the range of subjects on gas turbines, over ten combinations of film and screen types are used. Three different types of x-ray imaging systems were considered for use: direct type intensifiers (cesium iodide phosphors), and indirect type intensifiers — Marconi “Marionette” and the Oude Delft “Delcalix.”


Sign in / Sign up

Export Citation Format

Share Document