scholarly journals Effect of Cyrtostachys renda Fiber Loading on the Mechanical, Morphology, and Flammability Properties of Multi-Walled Carbon Nanotubes/Phenolic Bio-Composites

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3049
Author(s):  
Tamil Moli Loganathan ◽  
Mohamed Thariq Hameed Sultan ◽  
Qumrul Ahsan ◽  
Mohammad Jawaid ◽  
Jesuarockiam Naveen ◽  
...  

This research focuses on evaluating the effect of Cyrtostachys renda (CR) fiber and the impact of adding multi-walled carbon nanotubes (MWCNT) on the morphological, physical, mechanical, and flammability properties of phenolic composites. MWCNT were supplemented with phenolic resin through a dry dispersion ball milling method. Composites were fabricated by incorporating CR fiber in 0.5 wt.% MWCNT-phenolic matrix by hot pressing. Nevertheless, the void content, higher water absorption, and thickness swelling increased with fiber loading to the MWCNT/phenolic composites. The presence of MWCNT in phenolic enhanced the tensile, flexural, and impact strength by as much as 18%, 8%, and 8%, respectively, compared to pristine phenolic. The addition of CR fiber, however, strengthened MWCNT-phenolic composites, improving the tensile, flexural, and impact strength by as much as 16%, 16%, and 266%, respectively, for 50 wt.% loading of CR fiber. The CR fiber may adhere properly to the matrix, indicating that there is a strong interface between fiber and MWCNT-phenolic resin. UL-94 horizontal and limiting oxygen index (LOI) results indicated that all composite materials are in the category of self-extinguishing. Based on the technique for order preference by similarity to the ideal solution (TOPSIS) technique, 50 wt.% CR fiber-reinforced MWCNT-phenolic composite was chosen as the optimal composite for mechanical and flammability properties. This bio-based eco-friendly composite has the potential to be used as an aircraft interior component.

Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5838
Author(s):  
Guofeng Hu ◽  
Wanli Fu ◽  
Yumin Ma ◽  
Jianping Zhou ◽  
Hongbo Liang ◽  
...  

Due to their excellent mechanical and thermal properties and medium resistance, epoxy/carbon nanotubes and nanocomposites have been widely used in many fields. However, the conventional thermosetting process is not only time- and energy-consuming, but also causes the agglomeration of nanofillers, which leads to unsatisfactory properties of the obtained composites. In this study, multi-walled carbon nanotubes (MWCNTs)/epoxy nanocomposites were prepared using UV photoinduced frontal polymerization (PIFP) in a rapid fashion. The addition of MWCNTs modified by a surface carboxylation reaction was found to enhance the impact strength and heat resistance of the epoxy matrix effectively. The experimental results indicate that with 0.4 wt % loading of modified MWCNTs, increases of 462.23% in the impact strength and 57.3 °C in the glass transition temperature Tg were achieved. A high-performance nanocomposite was prepared in only a few minutes using the PIFP approach. Considering its fast, energy-saving, and environmentally friendly production, the PIFP approach displays considerable potential in the field of the fast preparation, repair, and deep curing of nanocomposites and coatings.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3567 ◽  
Author(s):  
Bogumiła Kumanek ◽  
Grzegorz Stando ◽  
Paweł S. Wróbel ◽  
Dawid Janas

Carbon nanotubes have been intensively researched for many years because of a wide array of promising properties that they have. In this paper, we present the impact of synthesis parameters on thermoelectric properties of nanocarbon material. We conducted a number of syntheses of multi-walled carbon nanotubes (MWCNTs) at different temperatures (800 and 900 °C) using various amounts of catalyst (2%, 5.5%, and 9.6%) to facilitate the process. We also tested the influence of injection rate of precursor and the necessity of material purification on thermoelectric properties of MWCNTs. The electrical conductivity, thermal conductivity, and Seebeck coefficient were measurement for all samples. Based on these parameters, the values of Power Factor and Figure of Merit were calculated. The results show that the most important parameter in the context of thermoelectric properties is purity of employed MWCNTs. To obtain appropriate material for this purpose optimum synthesis temperature and appropriate content of the catalyst must be selected. The study also reveals that post-synthetic purification of nanocarbon is essential to produce an attractive material for thermoelectrics.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1080 ◽  
Author(s):  
Polyxeni Dimoka ◽  
Spyridon Psarras ◽  
Christine Kostagiannakopoulou ◽  
Vassilis Kostopoulos

The present study aims to investigate the influence of multi-walled carbon nanotubes (MWCNTs) on the damage tolerance after impact (CAI) of the development of Out of Autoclave (OoA) carbon fibre reinforced polymer (CFRP) laminates. The introduction of MWCNTs into the structure of CFRPs has been succeeded by adding carbon nanotube-enriched sizing agent for the pre-treatment of the fibre preform and using an in-house developed methodology that can be easily scaled up. The modified CFRPs laminates with 1.5 wt.% MWCNTs were subjected to low velocity impact at three impact energy levels (8, 15 and 30 J) and directly compared with the unmodified laminates. In terms of the CFRPs impact performance, compressive strength of nanomodified composites was improved for all energy levels compared to the reference material. The test results obtained from C-scan analysis of nano-modified specimens showed that the delamination area after the impact is mainly reduced, without the degradation of compressive strength and stiffness, indicating a potential improvement of damage tolerance compared to the reference material. SEM analysis of fracture surfaces revealed the additional energy dissipation mechanisms; pulled-out carbon nanotubes which is the main reason for the improved damage tolerance of the multifunctional composites.


RSC Advances ◽  
2015 ◽  
Vol 5 (22) ◽  
pp. 16618-16621 ◽  
Author(s):  
Lei Qian ◽  
Lu Lu ◽  
Runhua Fan

Tunable negative permittivity was produced from phenolic resin with three-dimensional conductive networks of multi-walled carbon nanotubes.


2020 ◽  
Vol 30 ◽  
pp. 41-54
Author(s):  
Shelan A. Farman ◽  
Muayed K. Ibrahim ◽  
Kadhim A. Aadim

Nanocarbon structures such as graphene (GR), single-walled carbon nanotubes (SWCNTs) as well as the multi-walled carbon nanotubes (MWCNTs) were deposited on crystalline n-type silicon wafers to fabricate nanoCarbon-Si solar cells. Nanocarbon films deposited on glass and porous silicon (PS) via pulse laser deposition (PLD) with the use of Q-Switching Nd: YAG laser with λ=1064 (nm), Energy (E)=700 (mJ), Repetition rate (f)=6 (HZ) under vacuum condition with 2.5×10-2 (mbar). The surface morphology, structure, and optical Nanocarbon thin films have been examined with the use of X-ray Diffraction (XRD), Atomic force microscope (AFM), FTIR spectrophotometer and UV-visible. In addition, the power conversion efficiency that is related to the prepared solar cells is estimated through J-V characterization. The PCE of all Nanocarbon/PS follows the orders; SWCNTs/PS < MWCNTs/PS< GR/PS.


2007 ◽  
Vol 1006 ◽  
Author(s):  
Renato Amaral Minamisawa ◽  
Bopha Chhay ◽  
Daryush ILA

AbstractThe reported electromagnetic properties of carbon nanotubes (CNT) make them a promising material for nanoelectronic applications [1,2]. Addition of CNT has recently been shown to enhance mechanical properties of phenolic-resin polymers [3]. We are attempting to control the electrical transport behavior of phenolic-based polymers doped with CNT as a function of the different nanopowder concentration added to the polymer. In that regard, we developed a technique to obtain a material with homogenous dispersion of nanopowders, an important factor that influences the transport behavior. The chemical structure characterization was also evaluated using optical techniques.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 379 ◽  
Author(s):  
Dong-Keun Lee ◽  
Soyeon Jeon ◽  
Jiyoung Jeong ◽  
Il Je Yu ◽  
Kyung Seuk Song ◽  
...  

Multi-walled carbon nanotubes (MWCNTs) have variable metal impurities, but little is known about the impact of soluble metal impurities on the toxicity of MWCNTs. Here, we evaluated the role of soluble metal impurities to the acute inflammogenic potential of MWCNTs, using five types of high purity MWCNTs (>95%). MWCNTs and their soluble fractions collected at 24 h after incubation in phosphate-buffered saline showed diverse metal impurities with variable concentrations. The fiber-free soluble fractions produced variable levels of reactive oxygen species (ROS), and the iron level was the key determinant for ROS production. The acute inflammation at 24 h after intratracheal instillation of MWCNTs to rats at 0.19, 0.63, and 1.91 mg MWCNT/kg body weight (bw) or fiber-free supernatants from MWCNT suspensions at 1.91 and 7.64 mg MWCNT/kg bw showed that the number of granulocytes, a marker for acute inflammation, was significantly increased with a good dose-dependency. The correlation study showed that neither the levels of iron nor the ROS generation potential of the soluble fractions showed any correlations with the inflammogenic potential. However, the total concentration of transition metals in the soluble fractions showed a good correlation with the acute lung inflammogenic potential. These results implied that metal impurities, especially transitional metals, can contribute to the acute inflammogenic potential of MWCNTs, although the major parameter for the toxicity of MWCNTs is size and shape.


Sign in / Sign up

Export Citation Format

Share Document