scholarly journals New Phenotype and Mineralization of Biogenic Iron Oxide in Magnetotactic Bacteria

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3189
Author(s):  
Walid Baaziz ◽  
Corneliu Ghica ◽  
Jefferson Cypriano ◽  
Fernanda Abreu ◽  
Karine Anselme ◽  
...  

Many magnetotactic bacteria (MTB) biomineralize magnetite crystals that nucleate and grow inside intracellular membranous vesicles originating from invaginations of the cytoplasmic membrane. The crystals together with their surrounding membranes are referred to as magnetosomes. Magnetosome magnetite crystals nucleate and grow using iron transported inside the vesicle by specific proteins. Here, we tackle the question of the organization of magnetosomes, which are always described as constituted by linear chains of nanocrystals. In addition, it is commonly accepted that the iron oxide nanocrystals are in the magnetite-based phase. We show, in the case of a wild species of coccus-type bacterium, that there is a double organization of the magnetosomes, relatively perpendicular to each other, and that the nanocrystals are in fact maghemite. These findings were obtained, respectively, by using electron tomography of whole mounts of cells directly from the environment and high-resolution transmission electron microscopy and diffraction. Structure simulations were performed with the MacTempas software. This study opens new perspectives on the diversity of phenotypes within MTBs and allows to envisage other mechanisms of nucleation and formation of biogenic iron oxide crystals.

2021 ◽  
Vol 22 (8) ◽  
pp. 4126
Author(s):  
Sara De Vincentiis ◽  
Alessandro Falconieri ◽  
Frank Mickoleit ◽  
Valentina Cappello ◽  
Dirk Schüler ◽  
...  

Magnetosomes are membrane-enclosed iron oxide crystals biosynthesized by magnetotactic bacteria. As the biomineralization of bacterial magnetosomes can be genetically controlled, they have become promising nanomaterials for bionanotechnological applications. In the present paper, we explore a novel application of magnetosomes as nanotool for manipulating axonal outgrowth via stretch-growth (SG). SG refers to the process of stimulation of axonal outgrowth through the application of mechanical forces. Thanks to their superior magnetic properties, magnetosomes have been used to magnetize mouse hippocampal neurons in order to stretch axons under the application of magnetic fields. We found that magnetosomes are avidly internalized by cells. They adhere to the cell membrane, are quickly internalized, and slowly degrade after a few days from the internalization process. Our data show that bacterial magnetosomes are more efficient than synthetic iron oxide nanoparticles in stimulating axonal outgrowth via SG.


2007 ◽  
Vol 189 (17) ◽  
pp. 6437-6446 ◽  
Author(s):  
André Scheffel ◽  
Dirk Schüler

ABSTRACT Magnetotactic bacteria navigate along the earth's magnetic field using chains of magnetosomes, which are intracellular organelles comprising membrane-enclosed magnetite crystals. The assembly of highly ordered magnetosome chains is under genetic control and involves several specific proteins. Based on genetic and cryo-electron tomography studies, a model was recently proposed in which the acidic MamJ magnetosome protein attaches magnetosome vesicles to the actin-like cytoskeletal filament formed by MamK, thereby preventing magnetosome chains from collapsing. However, the exact functions as well as the mode of interaction between MamK and MamJ are unknown. Here, we demonstrate that several functional MamJ variants from Magnetospirillum gryphiswaldense and other magnetotactic bacteria share an acidic and repetitive central domain, which displays an unusual intra- and interspecies sequence polymorphism, probably caused by homologous recombination between identical copies of Glu- and Pro-rich repeats. Surprisingly, mamJ mutant alleles in which the central domain was deleted retained their potential to restore chain formation in a ΔmamJ mutant, suggesting that the acidic domain is not essential for MamJ's function. Results of two-hybrid experiments indicate that MamJ physically interacts with MamK, and two distinct sequence regions within MamJ were shown to be involved in binding to MamK. Mutant variants of MamJ lacking either of the binding domains were unable to functionally complement the ΔmamJ mutant. In addition, two-hybrid experiments suggest both MamK-binding domains of MamJ confer oligomerization of MamJ. In summary, our data reveal domains required for the functions of the MamJ protein in chain assembly and maintenance and provide the first experimental indications for a direct interaction between MamJ and the cytoskeletal filament protein MamK.


Author(s):  
Weiping Liu ◽  
Jennifer Fung ◽  
W.J. de Ruijter ◽  
Hans Chen ◽  
John W. Sedat ◽  
...  

Electron tomography is a technique where many projections of an object are collected from the transmission electron microscope (TEM), and are then used to reconstruct the object in its entirety, allowing internal structure to be viewed. As vital as is the 3-D structural information and with no other 3-D imaging technique to compete in its resolution range, electron tomography of amorphous structures has been exercised only sporadically over the last ten years. Its general lack of popularity can be attributed to the tediousness of the entire process starting from the data collection, image processing for reconstruction, and extending to the 3-D image analysis. We have been investing effort to automate all aspects of electron tomography. Our systems of data collection and tomographic image processing will be briefly described.To date, we have developed a second generation automated data collection system based on an SGI workstation (Fig. 1) (The previous version used a micro VAX). The computer takes full control of the microscope operations with its graphical menu driven environment. This is made possible by the direct digital recording of images using the CCD camera.


Author(s):  
H. Mori ◽  
Y. Murata ◽  
H. Yoneyama ◽  
H. Fujita

Recently, a new sort of nano-composites has been prepared by incorporating such fine particles as metal oxide microcrystallites and organic polymers into the interlayer space of montmorillonite. Owing to their extremely large specific surface area, the nano-composites are finding wide application[1∼3]. However, the topographic features of the microstructures have not been elucidated as yet In the present work, the microstructures of iron oxide-pillared montmorillonite have been investigated by high-resolution transmission electron microscopy.Iron oxide-pillared montmorillonite was prepared through the procedure essentially the same as that reported by Yamanaka et al. Firstly, 0.125 M aqueous solution of trinuclear acetato-hydroxo iron(III) nitrate, [Fe3(OCOCH3)7 OH.2H2O]NO3, was prepared and then the solution was mixed with an aqueous suspension of 1 wt% clay by continuously stirring at 308 K. The final volume ratio of the latter aqueous solution to the former was 0.4. The clay used was sodium montmorillonite (Kunimine Industrial Co.), having a cation exchange capacity of 100 mequiv/100g. The montmorillonite in the mixed suspension was then centrifuged, followed by washing with deionized water. The washed samples were spread on glass plates, air dried, and then annealed at 673 K for 72 ks in air. The resultant film products were approximately 20 μm in thickness and brown in color.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alejandro Lapresta-Fernández ◽  
Alfonso Salinas-Castillo ◽  
Luis Fermín Capitán-Vallvey

AbstractEncapsulation of magnetic nanoparticles (MNPs) of iron (II, III) oxide (Fe3O4) with a thermopolymeric shell of a crosslinked poly(2-(2-methoxyethoxy)ethyl methacrylate) P(MEO2MA) is successfully developed. Magnetic aggregates of large size, around 150–200 nm are obtained during the functionalization of the iron oxide NPs with vinyl groups by using 3-butenoic acid in the presence of a water soluble azo-initiator and a surfactant, at 70 °C. These polymerizable groups provide a covalent attachment of the P(MEO2MA) shell on the surface of the MNPs while a crosslinked network is achieved by including tetraethylene glycol dimethacrylate in the precipitation polymerization synthesis. Temperature control is used to modulate the swelling-to-collapse transition volume until a maximum of around 21:1 ratio between the expanded: shrunk states (from 364 to 144 nm in diameter) between 9 and 49 °C. The hybrid Fe3O4@P(MEO2MA) microgel exhibits a lower critical solution temperature of 21.9 °C below the corresponding value for P(MEO2MA) (bulk, 26 °C). The MEO2MA coating performance in the hybrid microgel is characterized by dynamic light scattering and transmission electron microscopy. The content of preformed MNPs [up to 30.2 (wt%) vs. microgel] was established by thermogravimetric analysis while magnetic properties by vibrating sample magnetometry.


2015 ◽  
Vol 748 ◽  
pp. 93-96
Author(s):  
Cheng Mei Liu ◽  
Yu Xia Zhao ◽  
Jin Dong ◽  
Lu Hai Li ◽  
Yen Wei ◽  
...  

Using iron-oleate complex as a precursor, oleic acid as a stabilizer and 1-octadecene as a reductant, uniform-sized and highly monodisperse iron oxide nanoparitcles with different diameters were successfully synthesized via solvothermal method by changing reaction time. Transmission electron microscope (TEM), thermo-gravimetric analysis (TGA), fourier transform infrared spectroscopy (FT-IR), physical property measurement system (PPMS) and dynamic light scattering (DLS) was used to characterize obtained iron oxide nanoparticles. These results indicated that iron oxide nanoparitcles with the diameter ranging from 4 to 8 nm can be controllably synthesized.


Author(s):  
Oladotun P. Bolade ◽  
Anuoluwa A. Akinsiku ◽  
Oluwatobi S. Oluwafemi ◽  
Akan B. Williams ◽  
Nsikak U. Benson

2014 ◽  
Vol 11 (4) ◽  
pp. 423-428 ◽  
Author(s):  
Sharon Grayer Wolf ◽  
Lothar Houben ◽  
Michael Elbaum

2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
N. Baladés ◽  
D. L. Sales ◽  
M. Herrera ◽  
A. M. Raya ◽  
J. C. Hernández-Garrido ◽  
...  

This paper explores the capability of scanning transmission electron microscopy (STEM) techniques in determining the dispersion degree of graphene layers within the carbon matrix by using simulated high-angle annular dark-field (HAADF) images. Results ensure that unmarked graphene layers are only detectable if their orientation is parallel to the microscope beam. Additionally, gold-marked graphene layers allow evaluating the dispersion degree in structural composites. Moreover, electron tomography has been demonstrated to provide truthfully 3D distribution of the graphene sheets inside the matrix when an appropriate reconstruction algorithm and 2D projections including channelling effect are used.


Sign in / Sign up

Export Citation Format

Share Document