scholarly journals On the Use of Carbon Cables from Plastic Solvent Combinations of Polystyrene and Toluene in Carbon Nanotube Synthesis

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
Alvin Orbaek White ◽  
Ali Hedayati ◽  
Tim Yick ◽  
Varun Shenoy Gangoli ◽  
Yubiao Niu ◽  
...  

For every three people on the planet, there are approximately two Tonnes (Te) of plastic waste. We show that carbon recovery from polystyrene (PS) plastic is enhanced by the coaddition of solvents to grow carbon nanotubes (CNTs) by liquid injection chemical vapour deposition. Polystyrene was loaded up to 4 wt% in toluene and heated to 780 °C in the presence of a ferrocene catalyst and a hydrogen/argon carrier gas at a 1:19 ratio. High resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Raman spectroscopy were used to identify multiwalled carbon nanotubes (MWCNTs). The PS addition in the range from 0 to 4 wt% showed improved quality and CNT homogeneity; Raman “Graphitic/Defective” (G/D) values increased from 1.9 to 2.3; mean CNT diameters increased from 43.0 to 49.2 nm; and maximum CNT yield increased from 11.37% to 14.31%. Since both the CNT diameters and the percentage yield increased following the addition of polystyrene, we conclude that carbon from PS contributes to the carbon within the MWCNTs. The electrical contact resistance of acid-washed Bucky papers produced from each loading ranged from 2.2 to 4.4 Ohm, with no direct correlation to PS loading. Due to this narrow range, materials with different loadings were mixed to create the six wires of an Ethernet cable and tested using iPerf3; the cable achieved up- and down- link speeds of ~99.5 Mbps, i.e., comparable to Cu wire with the same dimensions (~99.5 Mbps). The lifecycle assessment (LCA) of CNT wire production was compared to copper wire production for a use case in a Boeing 747-400 over the lifespan of the aircraft. Due to their lightweight nature, the CNT wires decreased the CO2 footprint by 21 kTonnes (kTe) over the aircraft’s lifespan.

Author(s):  
Alvin Orbaek White ◽  
Ali Hedayati ◽  
Tim Yick ◽  
Varun Shenoy Gangoli ◽  
Yubiao Niu ◽  
...  

For every three people on the planet there is approximately two Tonne (Te) of available plastic waste. We show that carbon recovery from polystyrene (PS) plastic is enhanced by the co-addition to solvents to grow carbon nanotubes (CNTs) by liquid injection chemical vapour deposition. Polystyrene was loaded up to 4 wt% in toluene and heated to 780 °C in the presence of a ferrocene catalyst and a hydrogen/argon carrier gas in a 1:19 ratio. High resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Raman spectroscopy were used to identify multi-walled carbon nanotubes (MWCNTs). The PS addition in the range from 0 to 4 wt% showed improved quality and CNT homogeneity; Raman “Graphitic/Defective” (G/D) values increased from 1.9 to 2.3; mean CNT diameters increased from 43.0 to 49.2 nm; and maximum CNT yield increased from 11.3% to 14.2%. Since both the CNT diameters and the percentage yield increased with respect to polystyrene addition, we conclude that carbon from the PS contributes to the carbon within the MWCNTs. The electrical contact resistance of acid washed Bucky papers produced from each loading, ranged from 2.2 to 4.4 Ohm, with no direct correlation to PS loading. Due to this narrow range, the materials with different loading were mixed to create six wires of an Ethernet cable and tested using iPerf to give uplink and downlink speeds of ~99.5 Mbps, comparable to Cu wire of identical dimension (~99.5 Mbps). The lifecycle assessment (LCA) of CNT wire production was compared to copper wire production for the use case in a Boeing 747-400 over the lifespan of the craft. Due to their lightweight nature the CNT wires decreased the CO2 footprint by 21 kTonne (kTe) over the aircraft lifespan.


2013 ◽  
Author(s):  
N. Thangapandian ◽  
S. Balasivanandha Prabu ◽  
R. Paskaramoorthy

In this work, the chemical vapour deposition (CVD) method is used for the production of carbon nanotubes (CNTs). The catalyst, Fe/MgO, was prepared through sonication technique. It was heated to 600 °C for 6 hours and this was used as the template for growing the CNTs using acetylene as carbon precursor. The deposited CNTs were separated by acid treatment followed by air oxidation. The purified CNTs were examined by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The CNTs were observed to have a multi-wall structure with the diameter in the range of 10–20 nm. These multiwalled carbon nanotubes (MWCNTs) were used as filler material in an epoxy matrix. Sonication technique was used to achieve uniform dispersion of CNTs within the matrix. The CNT/epoxy nanocomposite was cured at a temperature of 100 °C for 3 hours. Tensile strength, flexural strength, fire retardant properties and surface conductivity were studied. The results reveal that addition of MWCNTs to the epoxy promotes substantial improvement to the above mentioned properties.


2003 ◽  
Vol 772 ◽  
Author(s):  
Søren Dohn ◽  
Kristian Mølhave ◽  
Dorte Nørgaard Madsen ◽  
Ramona Mateiu ◽  
Peter Bøggild ◽  
...  

AbstractWe have formed suspended bridges of carbon nanotubes between microcantilevers using electron beam dissociation of metal-organic vapours. By electron beam exposure of a surface in the presence of gold-carbon molecules emitted inside an environmental scanning electron microscope, we are able to form tips and other freestanding nanostructures of high metallic content. Suspended bridges made entirely of this material exhibit resistances less than 50 times that of pure gold, and consist of dense metallic cores surrounded by a crust of nanoparticles. We used standard microfabrication techniques to produce silicon chips with multiple microcantilevers extending over the edge. Individual multiwalled carbon nanotubes grown catalyticcally by chemical vapour deposition, were positioned across two cantilevers using in-situ nanomanipulation tools. Drawing a cross-shaped gold-carbon bond on each end of the carbon nanotube consistently resulted in electrical contact with resistances in the range 1-90 Ω and linear current-voltage characteristics. We found that soldering bonds having a line width down to 10-15 nm form connections and last for days in ambient conditions.


2004 ◽  
Vol 99-100 ◽  
pp. 269-272
Author(s):  
R.J. Kalenczuk ◽  
E. Borowiak-Palen ◽  
T. Pichler ◽  
M. Rümmeli ◽  
J. Fink

We present a study on the preparation of multiwalled carbon nanotubes (MWCNT) using chemical vapour deposition (CVD). The CVD produced MWCNT and single wall carbon nanotubes (SWCNT) produced with a laser ablation technique were then chemically modified by substituting carbon atoms with boron and nitrogen atoms. The morphology and the crystal structure of the new class of nanostructures were analyzed by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM).


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1807-1812 ◽  
Author(s):  
H.-S. KIM ◽  
W.-I. PARK ◽  
Y. KIM ◽  
H.-J. JIN

Silk films prepared from regenerated silk fibroin are normally stabilized by β-sheet formation through the use of solvents (methanol, water etc.). Herein, we report a new method of preparing water-stable films without a β-sheet conformation from regenerated silk fibroin solutions by incorporating a small amount (0.2 wt%) of multiwalled carbon nanotubes (MWCNTs). To extend the biomaterial utility of silk proteins, forming water-stable silk-based materials with enhanced mechanical properties is essential. Scanning electron microscopy and transmission electron microscopy were used to observe the morphology of the MWCNT-incorporated silk films. The wide-angle X-ray diffraction provided clear evidence of the crystallization of the silk fibroin induced by MWCNT in the composite films without any additional annealing processing. The tensile modulus and strength of the composite films were improved by 108% and 51%, respectively, by the incorporation of 0.2 wt% of MWCNTs, as compared with those of the pure silk films. The method described in this study will provide an alternative means of crystallizing silk fibroin films without using an organic solvent or blending with any other polymers, which may be important in biomedical applications.


2012 ◽  
Vol 9 (77) ◽  
pp. 3514-3527 ◽  
Author(s):  
Pola Miralles ◽  
Errin Johnson ◽  
Tamara L. Church ◽  
Andrew T. Harris

Data on the bioavailability and toxicity of carbon nanotubes (CNTs) in the environment, and, in particular, on their interactions with vascular plants, are limited. We investigated the effects of industrial-grade multiwalled CNTs (75 wt% CNTs) and their impurities on alfalfa and wheat. Phytotoxicity assays were performed during both seed germination and seedling growth. The germinations of both species were tolerant of up to 2560 mg l −1 CNTs, and root elongation was enhanced in alfalfa and wheat seedlings exposed to CNTs. Remarkably, catalyst impurities also enhanced root elongation in alfalfa seedlings as well as wheat germination. Thus the impurities, not solely the CNTs, impacted the plants. CNT internalization by plants was investigated using electron microscopy and two-dimensional Raman mapping. The latter showed that CNTs were adsorbed onto the root surfaces of alfalfa and wheat without significant uptake or translocation. Electron microscopy investigations of internalization were inconclusive owing to poor contrast, so Fe 3 O 4 -functionalized CNTs were prepared and studied using energy-filter mapping of Fe 3 O 4 . CNTs bearing Fe 3 O 4 nanoparticles were detected in the epidermis of one wheat root tip only, suggesting that internalization was possible but unusual. Thus, alfalfa and wheat tolerated high concentrations of industrial-grade multiwalled CNTs, which adsorbed onto their roots but were rarely taken up.


2021 ◽  
Vol 11 (19) ◽  
pp. 9256
Author(s):  
Michał Chodkowski ◽  
Iryna Ya. Sulym ◽  
Konrad Terpiłowski ◽  
Dariusz Sternik

In this paper, we focus on fabrication and physicochemical properties investigations of silica–multiwalled carbon nanotubes/poly(dimethylsiloxane) composite coatings deposited on the glass supports activated by cold plasma. Air or argon was used as the carrier gas in the plasma process. Multiwalled carbon nanotubes were modified with poly(dimethylsiloxane) in order to impart their hydrophobicity. The silica–multiwalled carbon nanotubes/poly(dimethylsiloxane) nanocomposite was synthesized using the sol–gel technique with acid-assisted tetraethyl orthosilicate hydrolysis. The stability and the zeta potential of the obtained suspension were evaluated. Then, the product was dried and used as a filler in another sol–gel process, which led to the coating application via the dip-coating method. The substrates were exposed to the hexamethyldisilazane vapors in order to improve their hydrophobicity. The obtained surfaces were characterized by the wettability measurements and surface free energy determination as well as optical profilometry, scanning electron microscopy, and transmittance measurements. In addition, the thermal analyses of the carbon nanotubes as well as coatings were made. It was found that rough and hydrophobic coatings were obtained with a high transmittance in the visible range. They are characterized by the water contact angle larger than 90 degrees and the transmission at the level of 95%. The X-ray diffraction studies as well as scanning electron microscopy images confirmed the chemical and structural compositions of the coatings. They are thermally stable at the temperature up to 250 °C. Moreover, the thermal analysis showed that the obtained composite material has greater thermal resistance than the pure nanotubes.


2018 ◽  
Vol 38 (6) ◽  
pp. 537-543 ◽  
Author(s):  
Minghua Li ◽  
Zhiyuan Xu ◽  
Jinyang Chen ◽  
San-E Zhu

AbstractSurface covalent functionalization of multiwalled carbon nanotubes (MWCNTs) is carried out by coupling of isocyanate-decorated MWCNTs with hydroxyl-terminated polydimethylsiloxane (HTPS), resulting in the formation of functionalized MWCNTs. Thermogravimetry analysis (TGA) of functionalized MWCNTs-1,2,3 exhibits the similar peaks in the temperature range of 200–500°C, which all correspond to the degradation of chemically grafted polyurethane on the nanotube surface. Field emission scanning electron microscopy (FE-SEM) reveals that as the polyurethane grafted onto the surface of MWCNTs loading ratio increased, the surface roughness of the MWCNTs is reduced. The chemical interaction of HTPS with isocyanate-decorated nanotube surface using the grafting-to strategy in a one-step process is confirmed by Fourier transform infrared spectroscopy (FT-IR). The surface contact angle of MWCNTs-3 with the largest content of polyurethane reached 171°, indicating that the surface covered with low surface energy polyurethane shows a super-hydrophobic property. The good dispersion of polyurethane-functionalized MWCNT-3, particularly at high content in the NR nanocomposites, is evidenced from transmission electron microscopy (TEM).


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 669 ◽  
Author(s):  
Mariachiara Trapani ◽  
Antonino Mazzaglia ◽  
Anna Piperno ◽  
Annalaura Cordaro ◽  
Roberto Zagami ◽  
...  

The ability of multiwalled carbon nanotubes (MWCNTs) covalently functionalized with polyamine chains of different length (ethylenediamine, EDA and tetraethylenepentamine, EPA) to induce the J-aggregation of meso-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) was investigated in different experimental conditions. Under mild acidic conditions, protonated amino groups allow for the assembly by electrostatic interaction with the diacid form of TPPS, leading to hybrid nanomaterials. The presence of only one pendant amino group for a chain in EDA does not lead to any aggregation, whereas EPA (with four amine groups for chain) is effective in inducing J-aggregation using different mixing protocols. These nanohybrids have been characterized through UV/Vis extinction, fluorescence emission, resonance light scattering and circular dichroism spectroscopy. Their morphology and chemical composition have been elucidated through transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). TEM and STEM analysis evidence single or bundles of MWCNTs in contact with TPPS J-aggregates nanotubes. The nanohybrids are quite stable for days, even in aqueous solutions mimicking physiological medium (NaCl 0.15 M). This property, together with their peculiar optical features in the therapeutic window of visible spectrum, make them potentially useful for biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document