scholarly journals Suitability of Copper Nitride as a Wiring Ink Sintered by Low-Energy Intense Pulsed Light Irradiation

Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 617 ◽  
Author(s):  
Takashi Nakamura ◽  
Hea Jeong Cheong ◽  
Masahiko Takamura ◽  
Manabu Yoshida ◽  
Sei Uemura

Copper nitride particles have a low decomposition temperature, they absorb light, and are oxidation-resistant, making them potentially useful for the development of novel wiring inks for printing circuit boards by means of intense pulsed light (IPL) sintering at low-energy. Here, we compared the thermal decomposition and light absorption of copper materials, including copper nitride (Cu3N), copper(I) oxide (Cu2O), or copper(II) oxide (CuO). Among the copper compounds examined, copper nitride had the second highest light absorbency and lowest decomposition temperature; therefore, we concluded that copper nitride was the most suitable material for producing a wiring ink that is sintered by means of IPL irradiation. Wiring inks containing copper nitride were compared with those of wiring inks containing copper nitride, copper(I) oxide, or copper(II) oxide, and copper conversion rate and sheet resistance were also determined. Under low-energy irradiation (8.3 J cm−2), copper nitride was converted to copper at the highest rate among the copper materials, and provided a sheet resistance of 0.506 Ω·sq−1, indicating that copper nitride is indeed a candidate material for development as a wiring ink for low-energy intense pulsed light sintering-based printed circuit board production processes.

2021 ◽  
Vol 119 (13) ◽  
pp. 132102
Author(s):  
Minwoo Cho ◽  
Kyeong-Youn Song ◽  
Kwan hyun Cho ◽  
Hoo-Jeong Lee

2021 ◽  
Vol 11 (23) ◽  
pp. 11106
Author(s):  
Matthias Lindner ◽  
Andrei V. Pipa ◽  
Norbert Karpen ◽  
Rüdiger Hink ◽  
Dominik Berndt ◽  
...  

Avoiding ice accumulation on aerodynamic components is of enormous importance to flight safety. Novel approaches utilizing surface dielectric barrier discharges (SDBDs) are expected to be more efficient and effective than conventional solutions for preventing ice accretion on aerodynamic components. In this work, the realization of SDBDs based on thin-film substrates by means of micro-electro-mechanical-systems (MEMS) technology is presented. The anti-icing performance of the MEMS SDBDs is presented and compared to SDBDs manufactured by printed circuit board (PCB) technology. It was observed that the 35m thick electrodes of the PCB SDBDs favor surface icing with an initial accumulation of supercooled water droplets at the electrode impact edges. This effect was not observed for 0.3m thick MEMS-fabricated electrodes indicating a clear advantage for MEMS-technology SDBDs for anti-icing applications. Titanium was identified as the most suitable material for MEMS electrodes. In addition, an optimization of the MEMS-SDBDs with respect to the dielectric materials as well as SDBD design is discussed.


2012 ◽  
Vol 132 (6) ◽  
pp. 404-410 ◽  
Author(s):  
Kenichi Nakayama ◽  
Kenichi Kagoshima ◽  
Shigeki Takeda

2014 ◽  
Vol 5 (1) ◽  
pp. 737-741
Author(s):  
Alejandro Dueñas Jiménez ◽  
Francisco Jiménez Hernández

Because of the high volume of processing, transmission, and information storage, electronic systems presently requires faster clock speeds tosynchronizethe integrated circuits. Presently the “speeds” on the connections of a printed circuit board (PCB) are in the order of the GHz. At these frequencies the behavior of the interconnects are more like that of a transmission line, and hence distortion, delay, and phase shift- effects caused by phenomena like cross talk, ringing and over shot are present and may be undesirable for the performance of a circuit or system.Some of these phrases were extracted from the chapter eight of book “2-D Electromagnetic Simulation of Passive Microstrip Circuits” from the corresponding author of this paper.


Author(s):  
Lubica Miková

Urgency of the research. Mechatronics products become more sophisticated and complicated. Mechatronic engineers should be prepared for this complex design process. Practical experimental model helps improve educational process as preparing for practice. Target setting. Miniaturized model of the lift suitable for practical training on subjects focused to microcontrollers, sen-sors, actuators etc. Students have possibility to make practice on laboratory exercises, where they can verify theoretical knowledge obtained on lectures. The arrangement of the model has modular character, because of possibility to rearrange or adding of new function into model. The aim was to create minimized model of real lift with all functions and systems. Actual scientific researches and issues analysis. Many universities are oriented only to finished robotic kits and do not support creativity of students. Open access and open structure model missing in this field. There is a need for fast prototyping model, which allows the creation of new design of product. Uninvestigated parts of general matters defining. The question of the design of printed circuit board are uninvestigated, because they need more time than allows normal exercises. The research objective. The main aim of educational process is to educate engineers with basic knowledge, skills and handicraft. Practical models help as support devices for fulfil of this aim. All mechatronic students can practice a training on these practical models. They become as more skilled and well-oriented engineers.. The statement of basic materials. Construction consist of upper and lower base plate connected with four pillars used as linear guide for moving of lift cage. Lower base plate includes base microcontrollers boards, resistor network, power transis-tor array board, power supply terminals, relay modules, PWM module and signals terminals. Upper base plate consist of DC motor with gearing and screw mechanism for moving the lift cage. Conclusions. The model enables supports the creativity of the students. The starting point of the using of the model can be without any wired connections. Students should connect every part and try functionality of every function. The students receive the defined several problems and they have to analyze it and make any proposal for solution of defined problems.


Author(s):  
Prabjit Singh ◽  
Ying Yu ◽  
Robert E. Davis

Abstract A land-grid array connector, electrically connecting an array of plated contact pads on a ceramic substrate chip carrier to plated contact pads on a printed circuit board (PCB), failed in a year after assembly due to time-delayed fracture of multiple C-shaped spring connectors. The land-grid-array connectors analyzed had arrays of connectors consisting of gold on nickel plated Be-Cu C-shaped springs in compression that made electrical connections between the pads on the ceramic substrates and the PCBs. Metallography, fractography and surface analyses revealed the root cause of the C-spring connector fracture to be plating solutions trapped in deep grain boundary grooves etched into the C-spring connectors during the pre-plating cleaning operation. The stress necessary for the stress corrosion cracking mechanism was provided by the C-spring connectors, in the land-grid array, being compressed between the ceramic substrate and the printed circuit board.


Sign in / Sign up

Export Citation Format

Share Document