scholarly journals Bacterial Compatibility/Toxicity of Biogenic Silica (b-SiO2) Nanoparticles Synthesized from Biomass Rice Husk Ash

Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1440 ◽  
Author(s):  
Sanjeev K. Sharma ◽  
Ashish R. Sharma ◽  
Sudheer D. V. N. Pamidimarri ◽  
Jyotshana Gaur ◽  
Beer Pal Singh ◽  
...  

Biogenic silica (b-SiO2) nanopowders from rice husk ash (RHA) were prepared by chemical method and their bacterial compatibility/toxicity was analyzed. The X-ray diffractometry (XRD) patterns of the b-SiO2 nanopowders indicated an amorphous feature due to the absence of any sharp peaks. Micrographs of the b-SiO2 revealed that sticky RHA synthesized SiO2 nanopowder (S1) had clustered spherical nanoparticles (70 nm diameter), while b-SiO2 nanopowder synthesized from red RHA (S2) and b-SiO2 nanopowder synthesized from brown RHA (S3) were purely spherical (20 nm and 10 nm diameter, respectively). Compared to the S1 (11.36 m2g−1) and S2 (234.93 m2g−1) nanopowders, the S3 nanopowders showed the highest surface area (280.16 m2g−1) due to the small particle size and high porosity. The core level of the X-ray photoelectron spectroscopy (XPS) spectra showed that Si was constituted by two components, Si 2p (102.2 eV) and Si 2s (153.8 eV), while Oxygen 1s was observed at 531.8 eV, confirming the formation of SiO2. The anti-bacterial activity of the b-SiO2 nanopowders was investigated using both gram-positive (Escherichia coli) and gram-negative (Staphylococcus aureus) microorganisms. Compared to S2 and S3 silica nanopowders, S1 demonstrated enhanced antibacterial activity. This study signifies the medical, biomedical, clinical, and biological importance and application of RHA-mediated synthesized b-SiO2.

Clay Minerals ◽  
2012 ◽  
Vol 47 (3) ◽  
pp. 355-364 ◽  
Author(s):  
S. Fukuchi ◽  
M. Fukushima ◽  
R. Nishimoto ◽  
G. Qi ◽  
T. Sato

AbstractTo enhance the catalytic activities of zeolites for the polycondensation reactions of humic precursors, Fe was loaded into a zeolite via an ion-exchange reaction and the resulting product was subjected to calcination at 773 K. Two types iron-loaded zeolites were prepared using one equivalent (Fe-Z-1) and 10-equivalents (Fe-Z-10) of Fe2+ to the cation-exchange capacity of a natural zeolite from Niki town (Hokkaido, Japan). X-ray diffraction (XRD) patterns and X-ray photoelectron spectroscopy (XPS) spectra showed that the Fe(II) that was originally loaded into the cation-exchange sites in the zeolite became oxidized to a Fe(III) ionic species during the preparation. The catalytic activities of each zeolite were evaluated, based on the degree of darkening for reaction mixtures containing catechol, glycine and glucose as model humic precursors. The catalytic activities of Fe-Z-1 and Fe-Z-10 were higher than that for an untreated zeolite, and increased with the amount of Fe in the zeolite.


2021 ◽  
Vol 317 ◽  
pp. 109-115
Author(s):  
Rizamarhaiza Muda ◽  
Hamimah Abdul Rahman ◽  
Mohd Azham Azmi ◽  
Sufizar Ahmad ◽  
Shahruddin Mahzan ◽  
...  

Silica (SiO2) foams have been widely applied in numerous fields, mainly filters and catalysts supports, due to their characteristics of high permeability, high porosity and specific surface area. In this study, foams of SiO2 from rice husk ash (RHA) was fabricated via polymeric sponge replication method. Polymeric foam initially was used as template and dipped into SiO2 slurry followed by drying and sintering to yield the replica of the original polymeric foam. Different solid loadings of SiO2 as-derived from RHA (20 to 35 wt. %) slurry and sintering temperature of 1150 °C were applied. Phase identification and chemical composition of the green and sintered foams were conducted using X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF). Morphological observations were performed using Scanning Electron Microscopy (SEM). Density and porosity of the SiO2 foams were characterized using Archimedes method. Compressive strengths of the foams were determined as per ASTM C773-88 (1999). XRD analyses confirmed that the SiO2 as derived from the RHA were of tridymite and cristobalite phases with as high as 93% purity, as confirmed by XRF analyses. The density of SiO2 foams fabricated was in the range of 0.614 to 0.989 g/cm3, whereas the porosity values was in the range of 70% to 82%%. Compressive strengths were found to increase from 0.05 to 0.30 MPa respectively, proportionate with the increased SiO2 solid loading. Excellent properties of the SiO2 foams definitely signifies that the polymeric replication method is indeed a promising technique for SiO2 as derived from RHA foam fabrication.


2013 ◽  
Vol 717 ◽  
pp. 58-61
Author(s):  
Khanidtha Jantasom ◽  
Potjanee Somrud ◽  
Suttinart Noothongkeaw ◽  
Ki Seok An ◽  
Udom Tipparach ◽  
...  

Nanostructures materials were prepared from rice husk ash by carbon charcoal assisted. The rice husk ash mixed with coconut shell charcoal and Cu-Sn powder as the source materials. The mixtures materials were heated at 1100 °C under atmosphere of nitrogen with flow rate of 1 L/min. After the temperature was cool down, the prepared products were characterized by the stereo microscope, scanning electron microscope (SEM) and X-ray diffraction (XRD). The SEM images showed nanostructures materials such as nanoparticles, nanorods and nanowires. The XRD patterns indentified that the consisted of nanostructures materials were SiO2-CuO phase.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Valentina Krylova ◽  
Mindaugas Andrulevičius

Copper sulfide layers were formed on polyamide PA 6 surface using the sorption-diffusion method. Polymer samples were immersed for 4 and 5 h in 0.15 mol⋅  solutions and acidified with HCl (0.1 mol⋅) at . After washing and drying, the samples were treated with Cu(I) salt solution. The samples were studied by UV/VIS, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) methods. All methods confirmed that on the surface of the polyamide film a layer of copper sulfide was formed. The copper sulfide layers are indirect band-gap semiconductors. The values of are 1.25 and 1.3 eV for 4 h and 5 h sulfured PA 6 respectively. Copper XPS spectra analyses showed Cu(I) bonds only in deeper layers of the formed film, while in sulfur XPS S 2p spectra dominating sulfide bonds were found after cleaning the surface with ions. It has been established by the XRD method that, beside , the layer contains as well. For PA 6 initially sulfured 4 h, grain size forchalcocite, , was  nm and fordjurleite, , it was 54.17 nm. The sheet resistance of the obtained layer varies from 6300 to 102 .


2022 ◽  
Author(s):  
Sunita Kumari ◽  
Dhirendra Singhal ◽  
Rinku Walia ◽  
Ajay Rathee

Abstract The present project proposes to utilize rice husk and maize cob husk ash in the cement to mitigate the adverse impact of cement on environment and to enhance the disposal of waste in a sustainable manner. Ternary concrete / MR concrete was prepared by using rise husk and maize cob ash with cement. For the present project, five concrete mixes MR-0 (Control mix), MR-1 (Rice husk ash 10% and MR-2.5%), MR-2 (Rice husk ash 10% and MR-5%), MR-3 (Rice husk ash 10% and MR-2.5%), MR-4 (Rice husk ash 10% and MR-2.5%) were prepared. M35 concrete mix was designed as per IS 10262:2009 for low slump values 0-25mm. The purpose is to find the optimum replacement level of cement in M35 grade ternary concrete for I – Shaped paver blocks.In order to study the effects of these additions, micro-structural and structural properties test of concretes have been conducted. The crystalline properties of control mix and modified concrete are analyzed by Fourier Transform Infrared Spectroscope (FTIR), Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD). The results indicated that 10% Rice husk ash and 5% maize cob ash replaced with cement produce a desirable quality of ternary concrete mix having good compressive strength. The results of SEM analysis indicated that the morphology of both concrete were different, showing porous structure at 7 days age and become unsymmetrical with the addition of ashes. After 28 day age, the control mix contained more quantity of ettringite and became denser than ternary concrete. XRD analysis revealed the presence of portlandite in large quantity in controlled mix concrete while MR concrete had the partially hydrated particle of alite.


1994 ◽  
Vol 346 ◽  
Author(s):  
R.J.P. Corriu ◽  
D. Leclercq ◽  
P.H. Mutin ◽  
A. Vioux

ABSTRACTTwo silicon oxycarbide glasses with different compositions (O/Si ratio 1.2 and 1.8) were prepared by pyrolysis at moderate temperature (900 °C) of polysiloxane precursors. Their structure was investigated using quantitative 29Si solid-state NMR and X-ray photoelectron spectroscopy (XPS). The environment of the silicon atoms in the oxycarbide phase corresponded to a purely random distribution of Si-O and Si-C bonds depending on the O/Si ratio of the glass only and not on the structure of the precursors. At the light of the NMR results, the Si2p XPS spectra of the glasses may be interpreted using the contribution of the five possible SiOxC4-x tetrahedra. The Cls spectra of these glasses indicated the presence of oxycarbide carbon in CSi4 tetrahedra, similar to carbide carbon, and graphitic-like excess carbon.


2005 ◽  
Vol 13 (8) ◽  
pp. 839-846 ◽  
Author(s):  
Li-Ping Wang ◽  
Yun-Pu Wang ◽  
Fa-Ai Zhang

A new type of nano-composite film was prepared from polyvinyl alcohol, Ni2+-montmorillonite (Ni2+-MMT), defoamer, a levelling agent and a plasticizer. Its thermal characteristics were studied by Differential Scanning Calorimetry (DSC). The intermolecular interactions were measured by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), and the tensile strength (TS) and elongation at break (%E) were measured. The microstructures were studied by X-ray diffraction (XRD) and atomic force microscopy (AFM). FT-IR and XPS spectra indicated that cross-linking has taken place between PVA and Ni2+-MMT. XRD and AFM indicate that the PVA molecules had inserted themselves into the silicate layers of MMT, exfoliating them and dispersing them randomly into the PVA matrix. Compared to pure PVA film, the TS of the films was increased and %E decreased when the Ni2+-Montmorillonite was added and the dissolution temperature of the film was also reduced.


2021 ◽  
Vol 55 (6) ◽  
Author(s):  
Trung Kien Pham ◽  
Tran Ngo Quan

In this paper, we report on synthesizing xonotlite, calcium silicate hydrate (CSH), via a hydrothermal reaction using rice husk from the Mekong Delta, Vietnam. The rice husks were burnt at 1000 °C for 3 h. Grey rice husk ash was collected, then mixed with Ca(OH)2 at a Ca/Si molar ratio of 1 : 1. This was followed by a hydrothermal reaction at 180 °C for 24 h and 48 h to obtain the xonotlite mineral. Before and after adsorption, 3-mm xonotlite pellets were thoroughly characterized using X-ray diffractometry (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and ultraviolet-visible (UV-VIS) spectroscopy. This material has potential application in chromium(III) removal during a chrome-plating process. The adsorption efficiency of the 3-mm pellet samples reached more than 76 % after 12 h.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
D. Mayer ◽  
F. Lever ◽  
D. Picconi ◽  
J. Metje ◽  
S. Alisauskas ◽  
...  

AbstractThe conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220–250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states.


2016 ◽  
Vol 869 ◽  
pp. 209-214 ◽  
Author(s):  
Iara Janaína Fernandes ◽  
Daiane Calheiro ◽  
Emanuele Caroline Araújo dos Santos ◽  
Roxane Oliveira ◽  
Tatiana Louise Avila de Campos Rocha ◽  
...  

The use of rice husk ash (RHA) as filler in polymeric materials has been studied in different polymers. Research reported that RHA may successfully replace silica. The silica production process using ore demands high energy input and produces considerable amounts of waste. Therefore, the replacement of silica by RHA may be economically and environmentally advantageous, reducing environmental impact and adding value to a waste material. In this context, this study characterizes and compares RHA of different sources (moving grate and fluidized bed reactor) with commercially available silicas to assess performance as filler in polymeric materials. Samples were characterized by X-ray fluorescence, loss on ignition, X-ray diffraction, grain size, specific surface area, specific weight, and scanning electron microscopy. The results show that RHA may be used as a filler in several polymeric materials.


Sign in / Sign up

Export Citation Format

Share Document