scholarly journals Maternal High-Protein Diet during Pregnancy Modifies Rat Offspring Body Weight and Insulin Signalling but Not Macronutrient Preference in Adulthood

Nutrients ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 96 ◽  
Author(s):  
Gabrielle Carlin ◽  
Catherine Chaumontet ◽  
François Blachier ◽  
Pierre Barbillon ◽  
Nicolas Darcel ◽  
...  

Diet of mothers during gestation may impact offspring phenotype. This study evaluated the consequences of a maternal High-Protein (HP) diet during gestation on food preferences and phenotypic characteristics in adult rat offspring. Dams were fed a HP or a Normal-Protein (NP) isocaloric diet during gestation only. Weaned female pups were divided into 3 diet groups: NP control or one of two dietary self-selection (DSS) conditions. In DSS1, offspring had a free choice between proteins (100%) or a mix of carbohydrates (88%) and lipids (12%). In DSS2, the choice was between proteins (100%), carbohydrate (100%) or lipids (100%). DSS2 groups consumed more of their energy from protein and lipids, with a decreased carbohydrate intake (p < 0.0001) compared to NP groups, regardless of the maternal diet. Offspring from HP gestation dams fed the DSS2 diet (HPDSS2) had a 41.2% increase of total adiposity compared to NPDSS2 (p < 0.03). Liver Insulin receptor and Insulin substrate receptor 1 expression was decreased in offspring from HP compared to NP gestation dams. These results showed the specific effects of DSS and maternal diet and data suggested that adult, female offspring exposed to a maternal HP diet during foetal life were more prone to adiposity development, in response to postweaning food conditions.

2013 ◽  
Vol 110 (9) ◽  
pp. 1732-1741 ◽  
Author(s):  
Megan C. Hallam ◽  
Raylene A. Reimer

The negative effects of malnourishment in utero have been widely explored; the effects of increased maternal macronutrient intake are not known in relation to high fibre, and have been inconclusive with regard to high protein. In the present study, virgin Wistar dams were fed either a control (C), high-protein (40 %, w/w; HP) or high-prebiotic fibre (21·6 %, w/w; HF) diet throughout pregnancy and lactation. Pups consumed the C diet from 3 to 14·5 weeks of age, and then switched to a high-fat/sucrose diet for 8 weeks. A dual-energy X-ray absorptiometry scan and an oral glucose tolerance test were performed and plasma satiety hormones measured. The final body weight and the percentage of body fat were significantly affected by the interaction between maternal diet and offspring sex: weight and fat mass were higher in the female offspring of the HP v. HF dams. No differences in body weight or fat mass were seen in the male offspring. There was a significant sex effect for fasting and total AUC for ghrelin and fasting GIP, with females having higher levels than males. Liver TAG content and plasma NEFA were lower in the offspring of high-prebiotic fibre dams (HF1) than in those of high-protein dams (HP1) and control dams (C1). Intestinal expression of GLUT2 was decreased in HF1 and HP1 v. C1. The maternal HP and HF diets had lasting effects on body fat and hepatic TAG accumulation in the offspring, particularly in females. Whereas the HP diet predisposes to an obese phenotype, the maternal HF diet appears to reduce the susceptibility to obesity following a high-energy diet challenge in adulthood.


2021 ◽  
Author(s):  
Daniel J Tobiansky ◽  
George V Kachkovski ◽  
Reilly T Enos ◽  
Kim L Schmidt ◽  
E. Angela Murphy ◽  
...  

Maternal diets can have dramatic effects on the physiology, metabolism, and behaviour of offspring that persist into adulthood. However, the effects of maternal sucrose consumption on offspring remain unclear. Here, female rats were fed either a sucrose diet with a human-relevant level of sucrose (25% of kcal) or a macronutrient-matched, isocaloric control diet before, during, and after pregnancy. After weaning, all offspring were fed a standard low-sucrose rodent chow. We measured indicators of metabolism (weight, adipose, glucose tolerance, liver lipids) during development and adulthood (16-24 wk). We also measured food preference and motivation for sugar rewards in adulthood. Finally, in brain regions regulating these behaviours, we measured steroids and transcripts for steroidogenic enzymes, steroid receptors, and dopamine receptors. In male offspring, maternal sucrose intake decreased body mass and visceral adipose, increased preference for high-sucrose and high-fat diets, increased motivation for sugar rewards, and decreased mRNA levels of Cyp17a1 (an androgenic enzyme) in the nucleus accumbens. In female offspring, maternal sucrose intake increased basal corticosterone levels. These data demonstrate the profound, enduring, diverse, and sex-specific effects of maternal sucrose consumption on offspring phenotype.


Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 315
Author(s):  
Caroline Desclée de Maredsous ◽  
Gabrielle Carlin ◽  
Annemarie Oosting ◽  
Corine Delteil ◽  
Dalila Azzout-Marniche ◽  
...  

Fetal and early postnatal nutritional environments contribute to lifelong health. High-protein (HP) intake in early life can increase obesity risk in response to specific feeding conditions after weaning. This study investigated the effects of a maternal HP diet during pregnancy and/or lactation on the metabolic health of offspring. Three groups of dams received a normal-protein (NP, 20E% proteins) diet during gestation and lactation (Control group), an HP diet (55E% proteins) during gestation (HPgest group), or an HP diet during lactation (HPlact group). From weaning until 10 weeks, female pups were exposed to the NP, the HP or the western (W) diet. HPgest pups had more adipocytes (p = 0.009), more subcutaneous adipose tissue (p = 0.04) and increased expression of genes involved in liver fatty acid synthesis at 10 weeks (p < 0.05). HPgest rats also showed higher food intake and adiposity under the W diet compared to the Control and HPlact rats (p ≤ 0.04). The post-weaning HP diet reduced weight (p < 0.0001), food intake (p < 0.0001), adiposity (p < 0.0001) and glucose tolerance (p < 0.0001) compared to the NP and W diets; this effect was enhanced in the HPgest group (p = 0.04). These results show that a maternal HP diet during gestation, but not lactation, leads to a higher susceptibility to obesity and glucose intolerance in female offspring.


2002 ◽  
Vol 17 (12) ◽  
pp. 1000-1004 ◽  
Author(s):  
Monika Zimanyi ◽  
John Bertram ◽  
Jane Black

Endocrinology ◽  
2020 ◽  
Vol 161 (8) ◽  
Author(s):  
Purificación Ros ◽  
Francisca Díaz ◽  
Alejandra Freire-Regatillo ◽  
Pilar Argente-Arizón ◽  
Vicente Barrios ◽  
...  

Abstract Maternal nutrition can affect the susceptibility of the offspring to metabolic disease later in life, suggesting that this period is a window of opportunity for intervention to reduce the risk of metabolic disease. Resveratrol, a natural polyphenol, has a wide range of beneficial properties including anti-obesogenic, anti-atherosclerotic, and anti-diabetic effects. We previously reported that maternal resveratrol intake during pregnancy and lactation has early metabolic effects in the offspring with these effects at weaning depending on the type of diet ingested by the mother and the offspring’s sex. Here we analyzed whether these metabolic changes are maintained in the adult offspring and if they remain sex and maternal diet dependent. Wistar rats received a low-fat diet (LFD; 10.2% Kcal from fat) or high fat diet (HFD; 61.6% Kcal from fat) during pregnancy and lactation. Half of each group received resveratrol in their drinking water (50 mg/L). Offspring were weaned onto standard chow on postnatal day 21. Maternal resveratrol reduced serum cholesterol levels in all adult offspring from HFD mothers and increased it in adult female offspring from LFD mothers. Resveratrol increased visceral adipose tissue (VAT) in LFD offspring in both sexes but decreased it in male HFD offspring. Resveratrol shifted the distribution of VAT adipocyte size to a significantly higher incidence of large adipocytes, regardless of sex or maternal diet. These results clearly demonstrate that maternal resveratrol intake has long-lasting effects on metabolic health of offspring in a sex specific manner with these effects being highly dependent on the maternal diet.


2021 ◽  
Author(s):  
Ole Christian Sylte ◽  
Jesper Solheim Johansen ◽  
Indrek Heinla ◽  
Danielle J Houwing ◽  
Jocelien DA Olivier ◽  
...  

AbstractSelective serotonin reuptake inhibitors (SSRIs) are increasingly prescribed as medication for various affective disorders during pregnancy. SSRIs cross the placenta and affect serotonergic neurotransmission in the fetus, but the neurobehavioral consequences for the offspring remain largely unclear. Recent rodent research has linked perinatal SSRI exposure to alterations in both social and non-social aspects of behavior. However, this research has mainly focused on behavior within simplified environments. The current study investigates the effects of perinatal SSRI exposure on social and non-social investigation behaviors of adult rat offspring upon introduction to a novel seminatural environment with unknown conspecifics. During the perinatal period (gestational day 1 until postnatal day 21), rat dams received daily treatment with either an SSRI (fluoxetine, 10 mg/kg) or vehicle. Adult male and female offspring were observed within the first hour after introduction to a seminatural environment. The results showed that perinatal fluoxetine exposure altered aspects of non-social investigation behaviors, while not altering social investigation behaviors. More specific, both fluoxetine exposed males and females spent more total time on locomotor activity than controls. Furthermore, fluoxetine exposed females spent less time exploring objects and specific elements in the environment. The data suggest that perinatal exposure to SSRIs leads to a quicker, less detailed investigation strategy in novel environments, and that the alteration is mostly pronounced in females.


2006 ◽  
Vol 291 (4) ◽  
pp. R1025-R1030 ◽  
Author(s):  
C. Thone-Reineke ◽  
P. Kalk ◽  
M. Dorn ◽  
S. Klaus ◽  
K. Simon ◽  
...  

Maternal low-protein diet during pregnancy is a risk factor for cardiovascular disease of the offspring in later life. The impact of high-protein diet during pregnancy on the cardiovascular phenotype of the offspring, however, is still unknown. We examined the influence of a high-protein diet during pregnancy and lactation on the renal, hemodynamic, and metabolic phenotype of the F1 generation. Female Wistar rats were either fed a normal protein diet (20% protein: NP) or an isocaloric high-protein diet (40% protein: HP) throughout pregnancy and lactation. At weaning, the offspring were fed with standard diet, and they were allocated according to sex and maternal diet to four groups: normal-protein male (NPm, n = 25), normal-protein female (NPf, n = 19), high-protein male (HPm, n = 24), high-protein female (HPf, n = 29). During the experiment (22 wk), the animals were characterized by repeated measurement of body weight, food intake, blood pressure, glucose tolerance, energy expenditure, and kidney function. At the end of the study period histomorphological analyses of the kidneys and weight measurement of reproductive fat pads were conducted. There were no differences in birth weight between the study groups. No influence of maternal diet on energy expenditure, glucose tolerance, and plasma lipid levels was detected. Blood pressure and glomerulosclerosis were elevated in male offspring only, whereas female offspring were characterized by an increased food efficiency, higher body weight, and increased fat pads. Our study demonstrates that a high-protein diet during pregnancy and lactation in rats programs blood pressure, food efficiency, and body weight of the offspring in a sex-dependent manner.


Author(s):  
Ole Christian Sylte ◽  
Jesper Solheim Johansen ◽  
Indrek Heinla ◽  
Danielle J. Houwing ◽  
Jocelien D. A. Olivier ◽  
...  

AbstractSelective serotonin reuptake inhibitors (SSRIs) are increasingly prescribed as medication for various affective disorders during pregnancy. SSRIs cross the placenta and affect serotonergic neurotransmission in the fetus, but the neurobehavioral consequences for the offspring remain largely unclear. Recent rodent research has linked perinatal SSRI exposure to alterations in both social and non-social aspects of behavior. However, this research has mainly focused on behavior within simplified environments. The current study investigates the effects of perinatal SSRI exposure on social and non-social investigation behaviors of adult rat offspring upon introduction to a novel seminatural environment with unknown conspecifics. During the perinatal period (gestational day 1 until postnatal day 21), rat dams received daily treatment with either an SSRI (fluoxetine, 10 mg/kg) or vehicle. Adult male and female offspring were observed within the first hour after introduction to a seminatural environment. The results showed that perinatal fluoxetine exposure altered aspects of non-social investigation behaviors, while not altering social investigation behaviors. More specifically, both fluoxetine-exposed males and females spent more total time on locomotor activity than controls. Furthermore, fluoxetine-exposed females spent less time exploring objects and specific elements in the environment. The data suggest that perinatal exposure to SSRIs leads to a quicker, less detailed investigation strategy in novel environments and that the alteration is mostly pronounced in females.


Sign in / Sign up

Export Citation Format

Share Document