scholarly journals Comparative Investigation of Frankincense Nutraceuticals: Correlation of Boswellic and Lupeolic Acid Contents with Cytokine Release Inhibition and Toxicity against Triple-Negative Breast Cancer Cells

Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2341 ◽  
Author(s):  
Schmiech ◽  
Lang ◽  
Ulrich ◽  
Werner ◽  
Rashan ◽  
...  

For centuries, frankincense extracts have been commonly used in traditional medicine, and more recently, in complementary medicine. Therefore, frankincense constituents such as boswellic and lupeolic acids are of considerable therapeutic interest. Sixteen frankincense nutraceuticals were characterized by high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS), revealing major differences in boswellic and lupeolic acid compositions and total contents, which varied from 0.4% to 35.7%. Frankincense nutraceuticals significantly inhibited the release of proinflammatory cytokines, such as TNF-α, IL-6, and IL-8, by LPS-stimulated peripheral blood mononuclear cells (PBMC) and whole blood. Moreover, boswellic and lupeolic acid contents correlated with TNF-α, IL-1β, IL-6, IL-8, and IL-10 inhibition. The nutraceuticals also exhibited toxicity against the human triple-negative breast cancer cell lines MDA-MB-231, MDA-MB-453, and CAL-51 in vitro. Nutraceuticals with total contents of boswellic and lupeolic acids >30% were the most active ones against MDA-MB-231 with a half maximal inhibitory concentration (IC50) ≤ 7.0 µg/mL. Moreover, a frankincense nutraceutical inhibited tumor growth and induced apoptosis in vivo in breast cancer xenografts grown on the chick chorioallantoic membrane (CAM). Among eight different boswellic and lupeolic acids tested, β-ABA exhibited the highest cytotoxicity against MDA-MB-231 with an IC50 = 5.9 µM, inhibited growth of cancer xenografts in vivo, and released proinflammatory cytokines. Its content in nutraceuticals correlated strongly with TNF-, IL-6, and IL-8 release inhibition.

SpringerPlus ◽  
2014 ◽  
Vol 3 (1) ◽  
pp. 417 ◽  
Author(s):  
Masato Terashima ◽  
Kazuko Sakai ◽  
Yosuke Togashi ◽  
Hidetoshi Hayashi ◽  
Marco A De Velasco ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ragima Nadesh ◽  
Krishnakumar N. Menon ◽  
Lalitha Biswas ◽  
Ullas Mony ◽  
K. Subramania Iyer ◽  
...  

AbstractIn the present study, a protocol was developed for processing of human adipose derived mesenchymal stem cell secretome formulation of varying concentration. Its molecular composition was evaluated, and its effectiveness in vitro using breast cancer cell lines, and in vivo in a nude mice breast cancer model was studied to determine its role in suppressing triple negative breast cancer in a dose dependent manner. Because the secretome could have value as an add-on therapy along with a current drug, the effectiveness of the secretome both in monotherapy and in combination therapy along with paclitaxel was evaluated. The results showed significant cell kill when exposed to the secretome above 20 mg/ml at which concentration there was no toxicity to normal cells. 70 mg/ml of SF showed 90 ± 10% apoptosis and significant decrease in CD44+/CD24−, MDR1+ and PDL-1+ cancer cells. In vivo, the tumor showed no growth after daily intra tumor injections at 50 mg/ml and 100 mg/ml doses whereas substantial tumor growth occurred after saline intra tumor injection. The study concludes that SF is a potential biotherapeutic for breast cancer and could be used initially as an add-on therapy to other standard of care to provide improved efficacy without other adverse effects.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wenhui Guo ◽  
Jingyi Li ◽  
Haobo Huang ◽  
Fangmeng Fu ◽  
Yuxiang Lin ◽  
...  

Long non-coding RNAs (LncRNA) as the key regulators in all stages of tumorigenesis and metastasis. However, the underlying mechanisms are largely unknown. Here, we report a lncRNA RP11-214F16.8, which renamed Lnc-PCIR, is upregulated and higher RNA level of Lnc-PCIR was positively correlated to the poor survival of patients with triple negative breast cancer (TNBC) tissues. Lnc-PCIR overexpression significantly promoted cell proliferation, migration, and invasion in vitro and in vivo. RNA pulldown, RNA immunoprecipitation (RIP) and RNA transcriptome sequencing technology (RNA-seq) was performed to identify the associated proteins and related signaling pathways. Mechanistically, higher Lnc-PCIR level of blocks PABPC4 proteasome-dependent ubiquitination degradation; stable and highly expressed PABPC4 can further increase the stability of TAB3 mRNA, meanwhile, overexpression of Lnc-PCIR can disrupt the binding status of TAB3 and TAB2 which lead to activate the TNF-α/NF-κB pathway in TNBC cells. Our findings suggest that Lnc-PCIR promotes tumor growth and metastasis via up-regulating the mRNA/protein level of TAB3 and PABPC4, activating TNF-α/NF-κB signaling pathway in TNBC.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Maria Barton ◽  
Julia Santucci-Pereira ◽  
Olivia G. Vaccaro ◽  
Theresa Nguyen ◽  
Yanrong Su ◽  
...  

Abstract Background Long non coding RNAs (lncRNAs) are RNA molecules longer than 200 nucleotides that are not translated into proteins, but regulate the transcription of genes involved in different cellular processes, including cancer. Epidemiological analyses have demonstrated that parous women have a decreased risk of developing breast cancer in postmenopausal years if they went through a full term pregnancy in their early twenties. We here provide evidence of the role of BC200 in breast cancer and, potentially, in pregnancy’s preventive effect in reducing the lifetime risk of developing breast cancer. Methods Transcriptome analysis of normal breast of parous and nulliparous postmenopausal women revealed that several lncRNAs are differentially expressed in the parous breast. RNA sequencing of healthy postmenopausal breast tissue biopsies from eight parous and eight nulliparous women showed that there are 42 novel lncRNAs differentially expressed between these two groups. Screening of several of these 42 lncRNAs by RT-qPCR in different breast cancer cell lines, provided evidence that one in particular, lncEPCAM (more commonly known as BC200), was a strong candidate involved in cancer progression. Proliferation, migration, invasion and xerograph studies confirmed this hypothesis. Results The poorly studied oncogenic BC200 was selected to be tested in vitro and in vivo to determine its relevance in breast cancer and also to provide us with an understanding of its role in the increased susceptibility of the nulliparous women to cancer. Our results show that BC200 is upregulated in nulliparous women, and breast cancer cells and tissue. The role of BC200 is not completely understood in any of the breast cancer subtypes. We here provide evidence that BC200 has a role in luminal breast cancer as well as in the triple negative breast cancer subtype. Conclusion When overexpressed in luminal and triple negative breast cancer cell lines, BC200 shows increased proliferation, migration, and invasion in vitro. In vivo, overexpression of BC200 increased tumor size. Although treatment for cancer using lncRNAs as targets is in its infancy, the advancement in knowledge and technology to study their relevance in disease could lead to the development of novel treatment and preventive strategies for breast cancer.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4830
Author(s):  
Lisa Gherardini ◽  
Giovanni Inzalaco ◽  
Francesco Imperatore ◽  
Romina D’Aurizio ◽  
Lorenzo Franci ◽  
...  

Inhibition of DDX3X expression or activity reduces proliferation in cells from various tumor tissues, in particular in breast cancer, and its expression often correlates to tumor aggressiveness. This makes DDX3X a prominent candidate for the design of drugs for novel personalized therapeutic strategies. Starting from an in silico drug discovery approach, a group of molecules has been selected by molecular docking at the RNA binding site of DDX3X. Here, the most promising among them, FHP01, was evaluated in breast cancer preclinical models. Specifically, FHP01 exhibited very effective antiproliferative and killing activity against different breast cancer cell types, among which those from triple-negative breast cancer (TNBC). Interestingly, FHP01 also inhibited WNT signaling, a key tumorigenic pathway already correlated to DDX3X functions in breast cancer model cell lines. Ultimately, FHP01 also caused a significant reduction, in vivo, in the growth of MDA MB 231-derived TNBC xenograft models. Importantly, FHP01 showed good bioavailability and no toxicity on normal peripheral blood mononuclear cells in vitro and on several mouse tissues in vivo. Overall, our data suggest that the use of FHP01 and its related compounds may represent a novel therapeutic approach with high potential against breast cancer, including the triple-negative subtype usually correlated to the most unfavorable outcomes because of the lack of available targeted therapies.


2021 ◽  
Vol 22 (11) ◽  
pp. 5782
Author(s):  
Ashwini Makhale ◽  
Devathri Nanayakkara ◽  
Prahlad Raninga ◽  
Kum Kum Khanna ◽  
Murugan Kalimutho

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer lacking targeted therapy. Here, we evaluated the anti-cancer activity of APR-246, a P53 activator, and CX-5461, a RNA polymerase I inhibitor, in the treatment of TNBC cells. We tested the efficacy of individual and combination therapy of CX-5461 and APR-246 in vitro, using a panel of breast cancer cell lines. Using publicly available breast cancer datasets, we found that components of RNA Pol I are predominately upregulated in basal-like breast cancer, compared to other subtypes, and this upregulation is associated with poor overall and relapse-free survival. Notably, we found that the treatment of breast cancer cells lines with CX-5461 significantly hampered cell proliferation and synergistically enhanced the efficacy of APR-246. The combination treatment significantly induced apoptosis that is associated with cleaved PARP and Caspase 3 along with Annexin V positivity. Likewise, we also found that combination treatment significantly induced DNA damage and replication stress in these cells. Our data provide a novel combination strategy by utilizing APR-246 in combination CX-5461 in killing TNBC cells that can be further developed into more effective therapy in TNBC therapeutic armamentarium.


2021 ◽  
Vol 9 (7) ◽  
pp. e002383
Author(s):  
Jin-Li Wei ◽  
Si-Yu Wu ◽  
Yun-Song Yang ◽  
Yi Xiao ◽  
Xi Jin ◽  
...  

PurposeRegulatory T cells (Tregs) heavily infiltrate triple-negative breast cancer (TNBC), and their accumulation is affected by the metabolic reprogramming in cancer cells. In the present study, we sought to identify cancer cell-intrinsic metabolic modulators correlating with Tregs infiltration in TNBC.Experimental designUsing the RNA-sequencing data from our institute (n=360) and the Molecular Taxonomy of Breast Cancer International Consortium TNBC cohort (n=320), we calculated the abundance of Tregs in each sample and evaluated the correlation between gene expression levels and Tregs infiltration. Then, in vivo and in vitro experiments were performed to verify the correlation and explore the underlying mechanism.ResultsWe revealed that GTP cyclohydrolase 1 (GCH1) expression was positively correlated with Tregs infiltration and high GCH1 expression was associated with reduced overall survival in TNBC. In vivo and in vitro experiments showed that GCH1 increased Tregs infiltration, decreased apoptosis, and elevated the programmed cell death-1 (PD-1)-positive fraction. Metabolomics analysis indicated that GCH1 overexpression reprogrammed tryptophan metabolism, resulting in L-5-hydroxytryptophan (5-HTP) accumulation in the cytoplasm accompanied by kynurenine accumulation and tryptophan reduction in the supernatant. Subsequently, aryl hydrocarbon receptor, activated by 5-HTP, bound to the promoter of indoleamine 2,3-dioxygenase 1 (IDO1) and thus enhanced the transcription of IDO1. Furthermore, the inhibition of GCH1 by 2,4-diamino-6-hydroxypyrimidine (DAHP) decreased IDO1 expression, attenuated tumor growth, and enhanced the tumor response to PD-1 blockade immunotherapy.ConclusionsTumor-cell-intrinsic GCH1 induced immunosuppression through metabolic reprogramming and IDO1 upregulation in TNBC. Inhibition of GCH1 by DAHP serves as a potential immunometabolic strategy in TNBC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sofia M. Saraiva ◽  
Carlha Gutiérrez-Lovera ◽  
Jeannette Martínez-Val ◽  
Sainza Lores ◽  
Belén L. Bouzo ◽  
...  

AbstractTriple negative breast cancer (TNBC) is known for being very aggressive, heterogeneous and highly metastatic. The standard of care treatment is still chemotherapy, with adjacent toxicity and low efficacy, highlighting the need for alternative and more effective therapeutic strategies. Edelfosine, an alkyl-lysophospholipid, has proved to be a promising therapy for several cancer types, upon delivery in lipid nanoparticles. Therefore, the objective of this work was to explore the potential of edelfosine for the treatment of TNBC. Edelfosine nanoemulsions (ET-NEs) composed by edelfosine, Miglyol 812 and phosphatidylcholine as excipients, due to their good safety profile, presented an average size of about 120 nm and a neutral zeta potential, and were stable in biorelevant media. The ability of ET-NEs to interrupt tumor growth in TNBC was demonstrated both in vitro, using a highly aggressive and invasive TNBC cell line, and in vivo, using zebrafish embryos. Importantly, ET-NEs were able to penetrate through the skin barrier of MDA-MB 231 xenografted zebrafish embryos, into the yolk sac, leading to an effective decrease of highly aggressive and invasive tumoral cells’ proliferation. Altogether the results demonstrate the potential of ET-NEs for the development of new therapeutic approaches for TNBC.


Oncogene ◽  
2021 ◽  
Author(s):  
Jhih-Kai Pan ◽  
Cheng-Han Lin ◽  
Yao-Lung Kuo ◽  
Luo-Ping Ger ◽  
Hui-Chuan Cheng ◽  
...  

AbstractBrian metastasis, which is diagnosed in 30% of triple-negative breast cancer (TNBC) patients with metastasis, causes poor survival outcomes. Growing evidence has characterized miRNAs involving in breast cancer brain metastasis; however, currently, there is a lack of prognostic plasma-based indicator for brain metastasis. In this study, high level of miR-211 can act as brain metastatic prognostic marker in vivo. High miR-211 drives early and specific brain colonization through enhancing trans-blood–brain barrier (BBB) migration, BBB adherence, and stemness properties of tumor cells and causes poor survival in vivo. SOX11 and NGN2 are the downstream targets of miR-211 and negatively regulate miR-211-mediated TNBC brain metastasis in vitro and in vivo. Most importantly, high miR-211 is correlated with poor survival and brain metastasis in TNBC patients. Our findings suggest that miR-211 may be used as an indicator for TNBC brain metastasis.


2021 ◽  
Vol 7 (3) ◽  
pp. eabc4897
Author(s):  
Catríona M. Dowling ◽  
Kate E. R. Hollinshead ◽  
Alessandra Di Grande ◽  
Justin Pritchard ◽  
Hua Zhang ◽  
...  

Triple-negative breast cancer (TNBC) is a subtype of breast cancer without a targeted form of therapy. Unfortunately, up to 70% of patients with TNBC develop resistance to treatment. A known contributor to chemoresistance is dysfunctional mitochondrial apoptosis signaling. We set up a phenotypic small-molecule screen to reveal vulnerabilities in TNBC cells that were independent of mitochondrial apoptosis. Using a functional genetic approach, we identified that a “hit” compound, BAS-2, had a potentially similar mechanism of action to histone deacetylase inhibitors (HDAC). An in vitro HDAC inhibitor assay confirmed that the compound selectively inhibited HDAC6. Using state-of-the-art acetylome mass spectrometry, we identified glycolytic substrates of HDAC6 in TNBC cells. We confirmed that inhibition or knockout of HDAC6 reduced glycolytic metabolism both in vitro and in vivo. Through a series of unbiased screening approaches, we have identified a previously unidentified role for HDAC6 in regulating glycolytic metabolism.


Sign in / Sign up

Export Citation Format

Share Document