scholarly journals Effects of Nutrient Intake during Pregnancy and Lactation on the Endocrine Pancreas of the Offspring

Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2708 ◽  
Author(s):  
Valentine Suzanne Moullé ◽  
Patricia Parnet

The pancreas has an essential role in the regulation of glucose homeostasis by secreting insulin, the only hormone with a blood glucose lowering effect in mammals. Several circulating molecules are able to positively or negatively influence insulin secretion. Among them, nutrients such as fatty acids or amino acids can directly act on specific receptors present on pancreatic beta cells. Dietary intake, especially excessive nutrient intake, is known to modify energy balance in adults, resulting in pancreatic dysfunction. However, gestation and lactation are critical periods for fetal development and pup growth and specific dietary nutrients are required for optimal growth. Feeding alterations during these periods will impact offspring development and increase the risk of developing metabolic disorders in adulthood, leading to metabolic programming. This review will focus on the influence of nutrient intake during gestation and lactation periods on pancreas development and function in offspring, highlighting the molecular mechanism of imprinting on this organ.

2013 ◽  
Vol 41 (6) ◽  
pp. 1569-1576 ◽  
Author(s):  
Erik Keimpema ◽  
Daniela Calvigioni ◽  
Tibor Harkany

It is increasingly recognized that maternal exposure to metabolic (nutritional) stimuli, infections, illicit or prescription drugs and environmental stressors during pregnancy can predispose affected offspring to developing devastating postnatal illnesses. If detrimental maternal stimuli coincide with critical periods of tissue production and organogenesis then they can permanently derail key cellular differentiation programs. Maternal programming can thus either provoke developmental failure directly (‘direct hit’) or introduce latent developmental errors that enable otherwise sub-threshold secondary stressors to manifest as disease (‘double hit’) postnatally. Accumulating evidence suggests that nervous system development is tightly controlled by maternal metabolic stimuli, and whose synaptic wiring and integrative capacity are adversely affected by dietary and hormonal challenges, infections or episodes of illicit drug use. Endocannabinoids, a family of signal lipids derived from polyunsaturated fatty acids, have been implicated in neuronal fate determination, the control of axonal growth, synaptogenesis and synaptic neurotransmission. Therefore the continuum and interdependence of endocannabinoid actions during the formation and function of synapses together with dynamic changes in focal and circulating endocannabinoid levels upon maternal nutritional imbalance suggest that endocannabinoids can execute the ‘reprogramming’ of specific neuronal networks. In the present paper, we review molecular evidence suggesting that maternal nutrition and metabolism during pregnancy can affect the formation and function of the hippocampus and hypothalamus by altering endocannabinoid signalling such that neuropsychiatric diseases and obesity respectively ensue in affected offspring. Moreover, we propose that the placenta, fetal adipose and nervous tissues interact via endocannabinoid signals. Thus endocannabinoids are hypothesized to act as a molecular substrate of maternal programming.


2019 ◽  
Vol 20 (20) ◽  
pp. 5097 ◽  
Author(s):  
Saber Cherif ◽  
Pourié ◽  
Geoffroy ◽  
Julien ◽  
Helle ◽  
...  

The micronutrients vitamins B9 and B12 act as methyl donors in the one-carbon metabolism involved in transmethylation reactions which critically influence epigenetic mechanisms and gene expression. Both vitamins are essential for proper development, and their deficiency during pregnancy has been associated with a wide range of disorders, including persisting growth retardation. Energy homeostasis and feeding are centrally regulated by the hypothalamus which integrates peripheral signals and acts through several orexigenic and anorexigenic mediators. We studied this regulating system in a rat model of methyl donor deficiency during gestation and lactation. At weaning, a predominance of the anorexigenic pathway was observed in deficient pups, with increased plasma peptide YY and increased hypothalamic pro-opiomelanocortin (POMC) mRNA, in line with abnormal leptin, ghrelin, and insulin secretion and/or signaling during critical periods of fetal and/or postnatal development of the hypothalamus. These results suggest that early methyl donor deficiency can affect the development and function of energy balance circuits, resulting in growth and weight deficits. Maternal administration of folic acid (3 mg/kg/day) during the perinatal period tended to rectify peripheral metabolic signaling and central neuropeptide and receptor expression, leading to reduced growth retardation.


2020 ◽  
Vol 8 (8) ◽  
pp. 1119 ◽  
Author(s):  
Naser A. Alsharairi

Research has amply demonstrated that early life dysbiosis of the gut microbiota influences the propensity to develop asthma. The influence of maternal nutrition on infant gut microbiota is therefore of growing interest. However, a handful of prospective studies have examined the role of maternal dietary patterns during pregnancy in influencing the infant gut microbiota but did not assess whether this resulted in an increased risk of asthma later in life. The mechanisms involved in the process are also, thus far, poorly documented. There have also been few studies examining the effect of maternal dietary nutrient intake during lactation on the milk microbiota, the effect on the infant gut microbiota and, furthermore, the consequences for asthma development remain largely unknown. Therefore, the specific aim of this mini review is summarizing the current knowledge regarding the effect of maternal nutrition during pregnancy and lactation on the infant gut microbiota composition, and whether it has implications for asthma development.


2013 ◽  
Vol 114 (10) ◽  
pp. 2221-2230
Author(s):  
Qiping Shi ◽  
Simin Luo ◽  
Haiying Jia ◽  
Lie Feng ◽  
Xiaohua Lu ◽  
...  

2009 ◽  
Vol 1793 (11) ◽  
pp. 1768-1775 ◽  
Author(s):  
Mónica García ◽  
Zeynep Dogusan ◽  
Fabrice Moore ◽  
Shintaro Sato ◽  
Gunther Hartmann ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Juliana Rombaldi Bernardi ◽  
Renata de Souza Escobar ◽  
Charles Francisco Ferreira ◽  
Patrícia Pelufo Silveira

Nutrition in pregnancy, during lactation, childhood, and later stages has a fundamental influence on overall development. There is a growing research interest on the role of key dietary nutrients in fetal health. Omega-3 polyunsaturated fatty acids (n-3 LCPUFAs) play an important role in brain development and function. Evidence from animal models of dietary n-3 LCPUFAs deficiency suggests that these fatty acids promote early brain development and regulate behavioral and neurochemical aspects related to mood disorders (stress responses, depression, and aggression and growth, memory, and cognitive functions). Preclinical and clinical studies suggest the role of n-3 LCPUFAs on neurodevelopment and growth. n-3 LCPUFAs may be an effective adjunctive factor for neural development, growth, and cognitive development, but further large-scale, well-controlled trials and preclinical studies are needed to examine its clinical mechanisms and possible benefits. The present paper discusses the use of n-3 LCPUFAs during different developmental stages and the investigation of different sources of consumption. The paper summarizes the role of n-3 LCPUFAs levels during critical periods and their effects on the children’s neurodevelopment, nutrition, and growth.


1995 ◽  
Vol 269 (5) ◽  
pp. G613-G627 ◽  
Author(s):  
B. J. Van Klinken ◽  
J. Dekker ◽  
H. A. Buller ◽  
A. W. Einerhand

The cloning of mucin cDNAs brought about by the application of molecular biology and molecular analyses constitutes a major step in understanding mucin structure and function. Here two classes of mucins are described: epithelium-associated and endothelium/leukocyte-associated mucins, which have thus far been described separately in the literature. The epithelial mucins are generally believed to play a role in cytoprotection. The endothelial and leukocyte class of mucins are adhesion molecules involved in lymphocyte homing and lymphocyte activation or are part of the adhesion cascade that plays a role in the initiation of inflammation. Mucins in general contain many threonine and serine residues, which are extensively O-glycosylated. Due to this profound glycosylation, mucins have a filamentous conformation. By virtue of their extended filamentous, and often negatively charged, structure, mucins can act as a barrier protecting the cell. However, when an opposing cell has specific receptors for mucins, adhesion can override the barrier function. Therefore, mucins may be powerful two-edged swords: they are both protective and adhesive.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mariagrazia Valentini ◽  
Alessia Piermattei ◽  
Gabriele Di Sante ◽  
Giuseppe Migliara ◽  
Giovanni Delogu ◽  
...  

A close relationship exists between gut microbiota and immune responses. An imbalance of this relationship can determine local and systemic immune diseases. In fact the immune system plays an essential role in maintaining the homeostasis with the microbiota that normally resides in the gut, while, at the same time, the gut microbiota influences the immune system, modulating number and function of effector and regulatory T cells. To achieve this aim, mutual regulation between immune system and microbiota is achieved through several mechanisms, including the engagement of toll-like receptors (TLRs), pathogen-specific receptors expressed on numerous cell types. TLRs are able to recognize ligands from commensal or pathogen microbiota to maintain the tolerance or trigger the immune response. In this review, we summarize the latest evidences about the role of TLRs expressed in adaptive T cells, to understand how the immune system promotes intestinal homeostasis, fights invasion by pathogens, and is modulated by the intestinal microbiota.


2014 ◽  
Vol 5 (6) ◽  
pp. 420-434 ◽  
Author(s):  
S. A. Bayol ◽  
C. R. Bruce ◽  
G. D. Wadley

The importance of skeletal muscle for metabolic health and obesity prevention is gradually gaining recognition. As a result, interventions are being developed to increase or maintain muscle mass and metabolic function in adult and elderly populations. These interventions include exercise, hormonal and nutritional therapies. Nonetheless, growing evidence suggests that maternal malnutrition and obesity during pregnancy and lactation impede skeletal muscle development and growth in the offspring, with long-term functional consequences lasting into adult life. Here we review the role of skeletal muscle in health and obesity, providing an insight into how this tissue develops and discuss evidence that maternal obesity affects its development, growth and function into adult life. Such evidence warrants the need to develop early life interventions to optimise skeletal muscle development and growth in the offspring and thereby maximise metabolic health into adult life.


Author(s):  
Jauharotur Rihlah

Growth (growth) is an increase in the size of various organs that can be measured by the size of weight (grams, kilograms) or length (centimeters, meters). Development (development) is the increase in the ability or expertise in the structure and function of the body more complex, in an orderly pattern, as a result of the process of maturation. Keep in mind that the growth and development of each individual is unique. This is caused by several factors including genetic factors (heredity), environment (whether biological or psychological) and behavior (state / behavior in the family). For optimal growth and development of children, the environment must be considered, it must support the biological and psychological health of children, nutrition, must be sufficient and balanced, regularity to health services includes, providing immunization, rest and sleep must be sufficient and avoid fatigue. By using the content analysis method and documentary study, this research seeks to describe the meaning of early childhood growth and development stimulation in physical and mental perspectives. Appropriate stimulation will further optimize multi aspects in children, especially in terms of physical and mental.


Sign in / Sign up

Export Citation Format

Share Document