scholarly journals Human Postprandial Nutrient Metabolism and Low-Grade Inflammation: A Narrative Review

Nutrients ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 3000 ◽  
Author(s):  
Emma C.E. Meessen ◽  
Moritz V. Warmbrunn ◽  
Max Nieuwdorp ◽  
Maarten R. Soeters

The importance of the postprandial state has been acknowledged, since hyperglycemia and hyperlipidemia are linked with several chronic systemic low-grade inflammation conditions. Humans spend more than 16 h per day in the postprandial state and the postprandial state is acknowledged as a complex interplay between nutrients, hormones and diet-derived metabolites. The purpose of this review is to provide insight into the physiology of the postprandial inflammatory response, the role of different nutrients, the pro-inflammatory effects of metabolic endotoxemia and the anti-inflammatory effects of bile acids. Moreover, we discuss nutritional strategies that may be linked to the described pathways to modulate the inflammatory component of the postprandial response.

mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Chao Kang ◽  
Bin Wang ◽  
Kanakaraju Kaliannan ◽  
Xiaolan Wang ◽  
Hedong Lang ◽  
...  

ABSTRACT Metabolic endotoxemia originating from dysbiotic gut microbiota has been identified as a primary mediator for triggering the chronic low-grade inflammation (CLGI) responsible for the development of obesity. Capsaicin (CAP) is the major pungent bioactivator in chili peppers and has potent anti-obesity functions, yet the mechanisms linking this effect to gut microbiota remain obscure. Here we show that mice fed a high-fat diet (HFD) supplemented with CAP exhibit lower levels of metabolic endotoxemia and CLGI associated with lower body weight gain. High-resolution responses of the microbiota were examined by 16S rRNA sequencing, short-chain fatty acid (SCFA) measurements, and phylogenetic reconstruction of unobserved states (PICRUSt) analysis. The results showed, among others, that dietary CAP induced increased levels of butyrate-producing Ruminococcaceae and Lachnospiraceae, while it caused lower levels of members of the lipopolysaccharide (LPS)-producing family S24_7. Predicted function analysis (PICRUSt) showed depletion of genes involved in bacterial LPS synthesis in response to CAP. We further identified that inhibition of cannabinoid receptor type 1 (CB1) by CAP also contributes to prevention of HFD-induced gut barrier dysfunction. Importantly, fecal microbiota transplantation experiments conducted in germfree mice demonstrated that dietary CAP-induced protection against HFD-induced obesity is transferrable. Moreover, microbiota depletion by a cocktail of antibiotics was sufficient to block the CAP-induced protective phenotype against obesity, further suggesting the role of microbiota in this context. Together, our findings uncover an interaction between dietary CAP and gut microbiota as a novel mechanism for the anti-obesity effect of CAP acting through prevention of microbial dysbiosis, gut barrier dysfunction, and chronic low-grade inflammation. IMPORTANCE Metabolic endotoxemia due to gut microbial dysbiosis is a major contributor to the pathogenesis of chronic low-grade inflammation (CLGI), which primarily mediates the development of obesity. A dietary strategy to reduce endotoxemia appears to be an effective approach for addressing the issue of obesity. Capsaicin (CAP) is the major pungent component in red chili (genus Capsicum). Little is known about the role of gut microbiota in the anti-obesity effect of CAP. High-throughput 16S rRNA gene sequencing revealed that CAP significantly increased butyragenic bacteria and decreased LPS-producing bacteria (e.g., members of the S24-7 family) and LPS biosynthesis. By using antibiotics and microbiota transplantation, we prove that gut microbiota plays a causal role in dietary CAP-induced protective phenotype against high-fat-diet-induced CLGI and obesity. Moreover, CB1 inhibition was partially involved in the beneficial effect of CAP. Together, these data suggest that the gut microbiome is a critical factor for the anti-obesity effects of CAP. Metabolic endotoxemia due to gut microbial dysbiosis is a major contributor to the pathogenesis of chronic low-grade inflammation (CLGI), which primarily mediates the development of obesity. A dietary strategy to reduce endotoxemia appears to be an effective approach for addressing the issue of obesity. Capsaicin (CAP) is the major pungent component in red chili (genus Capsicum). Little is known about the role of gut microbiota in the anti-obesity effect of CAP. High-throughput 16S rRNA gene sequencing revealed that CAP significantly increased butyragenic bacteria and decreased LPS-producing bacteria (e.g., members of the S24-7 family) and LPS biosynthesis. By using antibiotics and microbiota transplantation, we prove that gut microbiota plays a causal role in dietary CAP-induced protective phenotype against high-fat-diet-induced CLGI and obesity. Moreover, CB1 inhibition was partially involved in the beneficial effect of CAP. Together, these data suggest that the gut microbiome is a critical factor for the anti-obesity effects of CAP.


2021 ◽  
Vol 11 ◽  
Author(s):  
Shireen Mohammad ◽  
Christoph Thiemermann

Diet-induced metabolic endotoxemia is an important factor in the development of many chronic diseases in animals and man. The gut epithelium is an efficient barrier that prevents the absorption of liposaccharide (LPS). Structural changes to the intestinal epithelium in response to dietary alterations allow LPS to enter the bloodstream, resulting in an increase in the plasma levels of LPS (termed metabolic endotoxemia). LPS activates Toll-like receptor-4 (TLR4) leading to the production of numerous pro-inflammatory cytokines and, hence, low-grade systemic inflammation. Thus, metabolic endotoxemia can lead to several chronic inflammatory conditions. Obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD) can also cause an increase in gut permeability and potential pharmacological and dietary interventions could be used to reduce the chronic low-grade inflammation associated with endotoxemia.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 469-P
Author(s):  
MILOS MRAZ ◽  
ANNA CINKAJZLOVA ◽  
ZDENA LACINOVÁ ◽  
JANA KLOUCKOVA ◽  
HELENA KRATOCHVILOVA ◽  
...  

Author(s):  
Charmaine S. Tam ◽  
Leanne M. Redman

AbstractObesity is characterized by a state of chronic low-grade inflammation due to increased immune cells, specifically infiltrated macrophages into adipose tissue, which in turn secrete a range of proinflammatory mediators. This nonselective low-grade inflammation of adipose tissue is systemic in nature and can impair insulin signaling pathways, thus, increasing the risk of developing insulin resistance and type 2 diabetes. The aim of this review is to provide an update on clinical studies examining the role of adipose tissue in the development of obesity-associated complications in humans. We will discuss adipose tissue inflammation during different scenarios of energy imbalance and metabolic dysfunction including obesity and overfeeding, weight loss by calorie restriction or bariatric surgery, and conditions of insulin resistance (diabetes, polycystic ovarian syndrome).


2021 ◽  
Author(s):  
Erika Ospina Escobar

During phagocytosis, macrophages engulf and sequester pathogens into phagosomes. Phagosomes then fuse with acidic and degradative lysosomes to degrade the internalized pathogen. We previously demonstrated that phagocytosis of IgG-opsonized particles and non-opsonized E.coli causes activation of the Transcription Factor EB (TFEB), which enhances the expression of lysosomal genes, increases the degradative capacity of lysosomes and boosts bactericidal activity. However, pathogens like Salmonella typhimurium have evolved mechanisms to evade and/or alter phagosome maturation to promote their own survival. We investigated: i) whether pathogens like Salmonella can alter TFEB activation and ii) whether phagocytosis-dependent activation of TFEB can counteract the pathogenicity of microorganisms. Here, we show that non-viable (heat-killed) S. typhimurium, pathogenic (EHEC and UPEC) and non-pathogenic E.coli (DH5α) all caused TFEB nuclear translocation in RAW macrophages, while strikingly live S. typhimurium maintained TFEB in the cytosol in the first hours post-infection. By contrast, Salmonella mutants for ΔsifA, ΔsopD2, ΔphoP all triggered TFEB activation in the first hour of infection. However, Salmonella infection eventually triggered a steady increase in nuclear TFEB after 4 h of infection, suggesting a more complex interplay between TFEB and Salmonella infection. We dissected the importance of TFEB activation towards Salmonella survivability by pre-activating TFEB before infection within WT macrophages and macrophages with a CRISPR-based deletion of TFEB. Our work suggests that Salmonella actively interferes with TFEB signaling in order to enhance its own survival. These results could provide insight into using TFEB as a target for the clearance of infections.


Endocrinology ◽  
2007 ◽  
Vol 149 (3) ◽  
pp. 1350-1357 ◽  
Author(s):  
Florian W. Kiefer ◽  
Maximilian Zeyda ◽  
Jelena Todoric ◽  
Joakim Huber ◽  
René Geyeregger ◽  
...  

Obesity is associated with a chronic low-grade inflammation characterized by macrophage infiltration of adipose tissue (AT) that may underlie the development of insulin resistance and type 2 diabetes. Osteopontin (OPN) is a multifunctional protein involved in various inflammatory processes, cell migration, and tissue remodeling. Because these processes occur in the AT of obese patients, we studied in detail the regulation of OPN expression in human and murine obesity. The study included 20 morbidly obese patients and 20 age- and sex-matched control subjects, as well as two models (diet-induced and genetic) of murine obesity. In high-fat diet-induced and genetically obese mice, OPN expression was drastically up-regulated in AT (40 and 80-fold, respectively) but remained largely unaltered in liver (<2-fold). Moreover, OPN plasma concentrations remained unchanged in both murine models of obesity, suggesting a particular local but not systemic importance for OPN. OPN expression was strongly elevated also in the AT of obese patients compared with lean subjects in both omental and sc AT. In addition, we detected three OPN isoforms to be expressed in human AT and, strikingly, an obesity induced alteration of the OPN isoform expression pattern. Analysis of AT cellular fractions revealed that OPN is exceptionally highly expressed in AT macrophages in humans and mice. Moreover, OPN expression in AT macrophages was strongly up-regulated by obesity. In conclusion, our data point toward a specific local role of OPN in obese AT. Therefore, OPN could be a critical regulator in obesity induced AT inflammation and insulin resistance.


2017 ◽  
Vol 64 (4) ◽  
pp. 375-378 ◽  
Author(s):  
Koro Gotoh ◽  
Kansuke Fujiwara ◽  
Manabu Anai ◽  
Mitsuhiro Okamoto ◽  
Takayuki Masaki ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Antonio Tursi ◽  
Walter Elisei

Diverticulosis of the colon is the most common condition in Western societies and it is the most common anatomic alteration of the human colon. Recurrent abdominal pain is experienced by about 20% of patients with diverticulosis, but the pathophysiologic mechanisms of its occurrence are not completely understood. In the last years, several fine papers have showed clearly the role of low-grade inflammation both in the occurrence of symptoms in people having diverticulosis, both in symptom persistence following acute diverticulitis, even if the evidence available is not so strong. We do not know yet what the trigger of this low-grade inflammation occurrence is. However, some preliminary evidence found colonic dysbiosis linked to low-grade inflammation and therefore to symptom occurrence in those patients. The aim of this paper is to summarize current evidences about the role of inflammation in symptom occurrence in symptomatic uncomplicated diverticular disease and in symptom persistence after an episode of acute diverticulitis.


2020 ◽  
Vol 21 (9) ◽  
pp. 3348
Author(s):  
Dorota Formanowicz ◽  
Agnieszka Rybarczyk ◽  
Marcin Radom ◽  
Piotr Formanowicz

Recent studies have shown that the innate and adaptive immune system, together with low-grade inflammation, may play an important role in essential hypertension. In this work, to verify the importance of selected factors for the development of essential hypertension, we created a Petri net-based model and analyzed it. The analysis was based mainly on t-invariants, knockouts of selected fragments of the net and its simulations. The blockade of the renin-angiotensin (RAA) system revealed that the most significant effect on the emergence of essential hypertension has RAA activation. This blockade affects: (1) the formation of angiotensin II, (2) inflammatory process (by influencing C-reactive protein (CRP)), (3) the initiation of blood coagulation, (4) bradykinin generation via the kallikrein-kinin system, (5) activation of lymphocytes in hypertension, (6) the participation of TNF alpha in the activation of the acute phase response, and (7) activation of NADPH oxidase—a key enzyme of oxidative stress. On the other hand, we found that the blockade of the activation of the RAA system may not eliminate hypertension that can occur due to disturbances associated with the osmotically independent binding of Na in the interstitium. Moreover, we revealed that inflammation alone is not enough to trigger primary hypertension, but it can coexist with it. We believe that our research may contribute to a better understanding of the pathology of hypertension. It can help identify potential subprocesses, which blocking will allow better control of essential hypertension.


2013 ◽  
Vol 144 (5) ◽  
pp. S-538 ◽  
Author(s):  
Mylène Vivinus-Nébot ◽  
Gregory Frin ◽  
Hanene Bzioueche ◽  
Raffaella Dainese ◽  
Ghislaine Bernard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document