scholarly journals Kokumi Taste Active Peptides Modulate Salt and Umami Taste

Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1198 ◽  
Author(s):  
Mee-Ra Rhyu ◽  
Ah-Young Song ◽  
Eun-Young Kim ◽  
Hee-Jin Son ◽  
Yiseul Kim ◽  
...  

Kokumi taste substances exemplified by γ-glutamyl peptides and Maillard Peptides modulate salt and umami tastes. However, the underlying mechanism for their action has not been delineated. Here, we investigated the effects of a kokumi taste active and inactive peptide fraction (500–10,000 Da) isolated from mature (FIIm) and immature (FIIim) Ganjang, a typical Korean soy sauce, on salt and umami taste responses in humans and rodents. Only FIIm (0.1–1.0%) produced a biphasic effect in rat chorda tympani (CT) taste nerve responses to lingual stimulation with 100 mM NaCl + 5 μM benzamil, a specific epithelial Na+ channel blocker. Both elevated temperature (42 °C) and FIIm produced synergistic effects on the NaCl + benzamil CT response. At 0.5% FIIm produced the maximum increase in rat CT response to NaCl + benzamil, and enhanced salt taste intensity in human subjects. At 2.5% FIIm enhanced rat CT response to glutamate that was equivalent to the enhancement observed with 1 mM IMP. In human subjects, 0.3% FIIm produced enhancement of umami taste. These results suggest that FIIm modulates amiloride-insensitive salt taste and umami taste at different concentration ranges in rats and humans.

2013 ◽  
Vol 109 (4) ◽  
pp. 1078-1090 ◽  
Author(s):  
Mark L. Dewis ◽  
Tam-Hao T. Phan ◽  
ZuoJun Ren ◽  
Xuanyu Meng ◽  
Meng Cui ◽  
...  

Effects of N-geranyl cyclopropylcarboxamide (NGCC) and four structurally related compounds ( N-cyclopropyl E2,Z6-nonadienamide, N-geranyl isobutanamide, N-geranyl 2-methylbutanamide, and allyl N-geranyl carbamate) were evaluated on the chorda tympani (CT) nerve response to NaCl and monosodium glutamate (MSG) in rats and wild-type (WT) and TRPV1 knockout (KO) mice and on human salty and umami taste intensity. NGCC enhanced the rat CT response to 100 mM NaCl + 5 μM benzamil (Bz; an epithelial Na+ channel blocker) between 1 and 2.5 μM and inhibited it above 5 μM. N-(3-methoxyphenyl)-4-chlorocinnamid (SB-366791, a TRPV1t blocker) inhibited the NaCl+Bz CT response in the absence and presence of NGCC. Unlike the WT mice, no NaCl+Bz CT response was observed in TRPV1 KO mice in the absence or presence of NGCC. NGCC enhanced human salt taste intensity of fish soup stock containing 60 mM NaCl at 5 and 10 μM and decreased it at 25 μM. Rat CT responses to NaCl+Bz and human salt sensory perception were not affected by the above four structurally related compounds. Above 10 μM, NGCC increased the CT response to MSG+Bz+SB-366791 and maximally enhanced the response between 40 and 60 μM. Increasing taste cell Ca2+ inhibited the NGCC-induced increase but not the inosine monophosphate-induced increase in glutamate response. Addition of 45 μM NGCC to chicken broth containing 60 mM sodium enhanced the human umami taste intensity. Thus, depending upon its concentration, NGCC modulates salt taste by interacting with the putative TRPV1t-dependent salt taste receptor and umami taste by interacting with a Ca2+-dependent transduction pathway.


Author(s):  
Xianli Duan ◽  
Xianyu Song ◽  
Shi Ruifang ◽  
Wang Xuan ◽  
Suhang Chen ◽  
...  

Toluene is an important constituent of liquid fuel, and it contributes to the formation of secondary organic aerosol (SOA) under photochemical conditions. However, the underlying mechanism of toluene SOA is...


Metabolites ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 137 ◽  
Author(s):  
Tomoyuki Yamana ◽  
Moyu Taniguchi ◽  
Takeharu Nakahara ◽  
Yusuke Ito ◽  
Natsuki Okochi ◽  
...  

Soy sauce is a traditional Japanese umami seasoning commonly made from soybeans, wheat, and salt water. Soy-sauce-like seasoning, made from other raw materials, such as rice and peas, has recently been developed. However, differences in the taste of soy-sauce-like seasoning, depending on the raw materials, have not been evaluated. Component profiling based on GC/MS combined with a paired comparison test were used to investigate the effect of raw materials on seasoning components and umami taste in five grain-based and four bean-based soy-sauce-like seasonings. In a principal component (PC) analysis, grain-based samples and bean-based samples were separated along the PC1 axis (explaining 48.1% of the total variance). Grain-based samples had a higher saccharide content, and bean-based samples had a higher amino acid content. Furthermore, differences in the umami intensity were also observed among sample types. This is the first detailed metabolomics study of the characteristic compounds and umami of a variety of soy-sauce-like seasonings made from different raw materials.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 837 ◽  
Author(s):  
Jeong Hwan Oh ◽  
Taek-Jeong Nam ◽  
Youn Hee Choi

Aging-induced cognitive dysfunction can be regulated by probiotics through bidirectional communication with the brain. This study aimed to investigate whether Capsosiphon fulvescens glycoproteins (Cf-hGP) enhanced probiotic-induced improvement of memory in aged rats and the underlying mechanism in the dorsal hippocampus. Cf-hGP were isolated using lectin resin. Cf-hGP (15 mg/kg/day) and/or Lactobacillus plantarum (L. plantarum) (109 CFU/rat/day) were orally administered once a day for 4 weeks. Co-treatment with Cf-hGP and L. plantarum synergistically improved spatial memory in aged rats, which was overturned by functional blocks of brain-derived neurotrophic factor (BDNF) signaling. Increases in BDNF expression and nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation were accompanied by mono- and/or co-administration in the dorsal hippocampus, while c-Jun N-terminal kinase (JNK) phosphorylation and glucose-regulated protein 78 expression were decreased. These synergistic effects were downregulated by blocks of BDNF/Nrf2-mediated signaling. In particular, co-treatment, not mono-treatment, reduced phosphorylation of eukaryotic elongation factor 2 (eEF2) regulated by eEF2 kinase and protein phosphatase 2A. Additionally, co-treatment downregulated the interaction between eEF2 kinase and JNK. These data demonstrated that cognitive impairment in aged rats was synergistically diminished by co-treatment with Cf-hGP and L. plantarum through BDNF-mediated regulation of Nrf2 and eEF2 signaling pathways in the dorsal hippocampus.


2005 ◽  
Vol 125 (6) ◽  
pp. 569-585 ◽  
Author(s):  
Vijay Lyall ◽  
Gerard L. Heck ◽  
Tam-Hao T. Phan ◽  
Shobha Mummalaneni ◽  
Shahbaz A. Malik ◽  
...  

The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by the measurement of intracellular Na+ activity ([Na+]i) in polarized rat fungiform taste receptor cells (TRCs) using fluorescence imaging and by chorda tympani (CT) taste nerve recordings. CT responses were monitored during lingual stimulation with ethanol solutions containing NaCl or KCl. CT responses were recorded in the presence of Bz (a specific blocker of the epithelial Na+ channel [ENaC]) or the vanilloid receptor-1 (VR-1) antagonists capsazepine or SB-366791, which also block the Bz-insensitive salt taste receptor, a VR-1 variant. CT responses were recorded at 23°C or 42°C (a temperature at which the VR-1 variant salt taste receptor activity is maximally enhanced). In the absence of permeable cations, ethanol induced a transient decrease in TRC volume, and stimulating the tongue with ethanol solutions without added salt elicited only transient phasic CT responses that were insensitive to elevated temperature or SB-366791. Preshrinking TRCs in vivo with hypertonic mannitol (0.5 M) attenuated the magnitude of the phasic CT response, indicating that in the absence of mineral salts, transient phasic CT responses are related to the ethanol-induced osmotic shrinkage of TRCs. In the presence of mineral salts, ethanol increased the Bz-insensitive apical cation flux in TRCs without a change in cell volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a transient phasic component and a sustained tonic component. Ethanol increased the Bz-insensitive NaCl CT response. This effect was further enhanced by elevating the temperature from 23°C to 42°C, and was blocked by SB-366791. We conclude that in the presence of mineral salts, ethanol modulates the Bz-insensitive VR-1 variant salt taste receptor.


1991 ◽  
Vol 260 (3) ◽  
pp. E345-E352 ◽  
Author(s):  
N. K. Fukagawa ◽  
L. G. Bandini ◽  
P. H. Lim ◽  
F. Roingeard ◽  
M. A. Lee ◽  
...  

Resting energy expenditure (EE) has recently been shown to be reduced in elderly human subjects even after adjustment for body size and composition. The present study extended this examination of EE in relation to age by comparing the thermic effect of a protein meal in young men (YM 20-26 yr, n = 9), old men (OM 70-89 yr, n = 9), and old women (OW 67-75 yr, n = 6). EE was measured before and from 1 to 6 h after presentation of 60 g protein and of a control noncaloric meal on separate occasions. Despite substantial differences in body size and composition, the protein-induced increment in EE was similar in all groups [maximum increase: YM 0.21 +/- 0.05, OM 0.17 +/- 0.12, and OW 0.17 +/- 0.04 (SE) kcal/min]. Although fasting plasma norepinephrine (NE) levels differed among all three groups (YM less than OM less than OW), NE concentrations were not affected by protein ingestion. Because protein administration acutely promotes synthesis of dopamine (DA) and serotonin (5-HT), which are both capable of stimulating EE, blockade of extraneuronal synthesis of DA and 5-HT with carbidopa, a competitive inhibitor of aromatic-L-amino acid decarboxylase, failed to suppress (and actually increased) postprandial EE. These data demonstrate that not all mechanisms responsible for EE decline with age and that protein-induced changes in EE are more a function of the oral load itself than of the size, age, or antecedent diet of the individual ingesting the protein.


Nutrients ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 155 ◽  
Author(s):  
Emma Feeney ◽  
Laura Leacy ◽  
Mark O’Kelly ◽  
Niamh Leacy ◽  
Abbie Phelan ◽  
...  

Taste is influenced by several factors. However, whether habitual exercise level is associated with differences in taste perception has received little investigation. The aim of this study was to determine if habitual exercise is associated with differences in taste perception in men. Active (n = 16) and inactive (n = 14) males, between ages 18–55, underwent two days of sensory testing, using prototypical taste stimuli of high and low concentrations for sweet, salt, bitter, sour, umami, and carbohydrate (maltodextrin). Mean perceived intensity and hedonic ratings were recorded. Eating behaviour was assessed by the three factor eating questionnaire and food intake by EPIC food frequency questionnaire (FFQ). There were moderate to large differences between the two groups in perceived intensity for sweet taste at the high concentration and umami taste at both high and low concentrations, with active males recording a higher perceived intensity (p < 0.05 for all). The active group also recorded a greater dislike for umami low and carbohydrate low concentration (p < 0.01). Salt, bitter and sour perception did not significantly differ between the two groups. FFQ analysis showed no difference in % energy from macronutrients between the groups. Eating behaviour traits correlated with sweet taste intensity and umami taste liking, independent of activity status. Results indicated that sweet and umami taste perception differ in active compared to inactive males. Habitual exercise level should be considered in taste perception research and in product development. Whether differences in taste perception could be one factor influencing food intake and thus energy balance with habitual exercise warrants further investigation.


Sign in / Sign up

Export Citation Format

Share Document