scholarly journals Vitamin D Status and Vitamin D-Dependent Apoptosis in Obesity

Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1392 ◽  
Author(s):  
Igor N. Sergeev

The role of vitamin D in obesity appears to be linked to vitamin D insufficient/deficient status. However, mechanistic understanding of the role of vitamin D in obesity is lacking. We have shown earlier that the vitamin D hormonal form, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), induces cell death by apoptosis in mature adipocytes. This effect of the hormone is mediated by the cellular Ca2+ signaling pathway: a sustained increase of intracellular (cytosolic) Ca2+ concentration followed by activation of Ca2+-dependent initiators and effectors of apoptosis. In recent animal studies, we demonstrated that low vitamin D status is observed in diet-induced obesity (DIO). High intake of vitamin D3 in DIO decreased the weight of white adipose tissue and improved biomarkers related to adiposity and Ca2+ regulation. The anti-obesity effect of vitamin D (1,25(OH)2D3) in DIO was determined by the induction of Ca2+-mediated apoptosis in mature adipocytes executed by Ca2+-dependent apoptotic proteases (calpains and caspases). Thus, a high intake of vitamin D in obesity increases vitamin D nutritional status and normalizes vitamin D hormonal status that is accompanied by the reduction of adiposity. Overall, our findings imply that vitamin D may contribute to the prevention of obesity and obesity-related diseases and that the mechanism of the anti-obesity effect of 1,25(OH)2D3 includes induction of Ca2+-mediated apoptosis in adipocytes.

2014 ◽  
Vol 2 (4) ◽  
pp. 662-667 ◽  
Author(s):  
Rada Miskovic ◽  
Aleksandra Plavsic ◽  
Jasna Bolpacic ◽  
Sanvila Raskovic ◽  
Mirjana Bogic

Vitamin D is a steroid hormone that in addition to its well known role in the metabolism of calcium and phosphorus exerts immunoregulatory properties. Data from animal studies and from prospective clinical trials on patients with rheumatoid arthritis, multiple sclerosis and type 1 diabetes point to the potential role of vitamin D as important environmental factor in the development of autoimmune diseases. Such role of vitamin D in systemic lupus erythematosus (SLE) has not yet been sufficiently studied. This review shows the sources, metabolism and mechanism of action of vitamin D, its effect on the cells of the immune system, prevalence and causes of vitamin D deficiency in patients with SLE, the link between vitamin D status and disease activity as well as recommendations for vitamin D supplementation.


Endocrinology ◽  
2009 ◽  
Vol 150 (2) ◽  
pp. 651-661 ◽  
Author(s):  
Carmen J. Narvaez ◽  
Donald Matthews ◽  
Emily Broun ◽  
Michelle Chan ◽  
JoEllen Welsh

Increased adiposity is a feature of aging in both mice and humans, but the molecular mechanisms underlying age-related changes in adipose tissue stores remain unclear. In previous studies, we noted that 18-month-old normocalcemic vitamin D receptor (VDR) knockout (VDRKO) mice exhibited atrophy of the mammary adipose compartment relative to wild-type (WT) littermates, suggesting a role for VDR in adiposity. Here we monitored body fat depots, food intake, metabolic factors, and gene expression in WT and VDRKO mice on the C57BL6 and CD1 genetic backgrounds. Regardless of genetic background, both sc and visceral white adipose tissue depots were smaller in VDRKO mice than WT mice. The lean phenotype of VDRKO mice was associated with reduced serum leptin and compensatory increased food intake. Similar effects on adipose tissue, leptin and food intake were observed in mice lacking Cyp27b1, the 1α-hydroxylase enzyme that generates 1,25-dihydroxyvitamin D3, the VDR ligand. Although VDR ablation did not reduce expression of peroxisome proliferator-activated receptor-γ or fatty acid synthase, PCR array screening identified several differentially expressed genes in white adipose tissue from WT and VDRKO mice. Uncoupling protein-1, which mediates dissociation of cellular respiration from energy production, was greater than 25-fold elevated in VDRKO white adipose tissue. Consistent with elevation in uncoupling protein-1, VDRKO mice were resistant to high-fat diet-induced weight gain. Collectively, these studies identify a novel role for 1,25-dihydroxyvitamin D3 and the VDR in the control of adipocyte metabolism and lipid storage in vivo. Mice lacking the vitamin D receptor or its ligand display reduced adiposity, resistance to diet-induced obesity, and induction of uncoupling protein-1 in white adipose tissue.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yawei Wang ◽  
Binlin Tang ◽  
Lei Long ◽  
Peng Luo ◽  
Wei Xiang ◽  
...  

AbstractPro-inflammatory activation of adipose tissue macrophages (ATMs) is causally linked to obesity and obesity-associated disorders. A number of studies have demonstrated the crucial role of mitochondrial metabolism in macrophage activation. However, there is a lack of pharmaceutical agents to target the mitochondrial metabolism of ATMs for the treatment of obesity-related diseases. Here, we characterize a near-infrared fluorophore (IR-61) that preferentially accumulates in the mitochondria of ATMs and has a therapeutic effect on diet-induced obesity as well as obesity-associated insulin resistance and fatty liver. IR-61 inhibits the classical activation of ATMs by increasing mitochondrial complex levels and oxidative phosphorylation via the ROS/Akt/Acly pathway. Taken together, our findings indicate that specific enhancement of ATMs oxidative phosphorylation improves chronic inflammation and obesity-related disorders. IR-61 might be an anti-inflammatory agent useful for the treatment of obesity-related diseases by targeting the mitochondria of ATMs.


2021 ◽  
pp. bmjmilitary-2020-001686
Author(s):  
Iain T Parsons ◽  
R M Gifford ◽  
M J Stacey ◽  
L E Lamb ◽  
M K O'Shea ◽  
...  

For most individuals residing in Northwestern Europe, maintaining replete vitamin D status throughout the year is unlikely without vitamin D supplementation and deficiency remains common. Military studies have investigated the association with vitamin D status, and subsequent supplementation, with the risk of stress fractures particularly during recruit training. The expression of nuclear vitamin D receptors and vitamin D metabolic enzymes in immune cells additionally provides a rationale for the potential role of vitamin D in maintaining immune homeostasis. One particular area of interest has been in the prevention of acute respiratory tract infections (ARTIs). The aims of this review were to consider the evidence of vitamin D supplementation in military populations in the prevention of ARTIs, including SARS-CoV-2 infection and consequent COVID-19 illness. The occupational/organisational importance of reducing transmission of SARS-CoV-2, especially where infected young adults may be asymptomatic, presymptomatic or paucisymptomatic, is also discussed.


2012 ◽  
Vol 108 (11) ◽  
pp. 1915-1923 ◽  
Author(s):  
Cherlyn Ding ◽  
Dan Gao ◽  
John Wilding ◽  
Paul Trayhurn ◽  
Chen Bing

Vitamin D deficiency and the rapid increase in the prevalence of obesity are both considered important public health issues. The classical role of vitamin D is in Ca homoeostasis and bone metabolism. Growing evidence suggests that the vitamin D system has a range of physiological functions, with vitamin D deficiency contributing to the pathogenesis of several major diseases, including obesity and the metabolic syndrome. Clinical studies have shown that obese individuals tend to have a low vitamin D status, which may link to the dysregulation of white adipose tissue. Recent studies suggest that adipose tissue may be a direct target of vitamin D. The expression of both the vitamin D receptor and 25-hydroxyvitamin D 1α-hydroxylase (CYP27B1) genes has been shown in murine and human adipocytes. There is evidence that vitamin D affects body fat mass by inhibiting adipogenic transcription factors and lipid accumulation during adipocyte differentiation. Some recent studies demonstrate that vitamin D metabolites also influence adipokine production and the inflammatory response in adipose tissue. Therefore, vitamin D deficiency may compromise the normal metabolic functioning of adipose tissue. Given the importance of the tissue in energy balance, lipid metabolism and inflammation in obesity, understanding the mechanisms of vitamin D action in adipocytes may have a significant impact on the maintenance of metabolic health. In the present review, we focus on the signalling role of vitamin D in adipocytes, particularly the potential mechanisms through which vitamin D may influence adipose tissue development and function.


Nutrients ◽  
2011 ◽  
Vol 3 (12) ◽  
pp. 1023-1041 ◽  
Author(s):  
Louise O’Mahony ◽  
Magdalena Stepien ◽  
Michael J. Gibney ◽  
Anne P. Nugent ◽  
Lorraine Brennan

1981 ◽  
Vol 241 (1) ◽  
pp. G49-G53
Author(s):  
N. Brautbar ◽  
B. S. Levine ◽  
M. W. Walling ◽  
J. W. Coburn

The intestinal absorption of calcium (Ca) has been shown to depend on vitamin D3, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], and dietary phosphorus (P) concentration. This study was designed to evaluate the role of dietary P independent of vitamin D3 or 1,25(OH)2D3. Vitamin D-deficient rats were studied during dietary P restriction and were compared with control groups raised on a normal-phosphorus diet (NP). Balance studies were sued. Net intestinal Ca absorption was significantly lower with dietary P restriction compared with the NP group. This malabsorption of Ca was corrected by the administration of either D3 for 1,25(OH)2D3, despite hypophosphatemia. Everted gut sacs showed a marked reduction in the uptake of 45Ca in the duodenum, jejunum, and ileum during dietary P restriction. We concluded that dietary P concentration plays a major role in intestinal Ca absorption in the vitamin D-deficient rats. These findings suggest an effect of the low-phosphate diet on the vitamin D-dependent, Ca-transport mechanism.


Author(s):  
Brice Kouakou Bla ◽  
Alexis Gnogbo Bahi ◽  
Juliana Mensah-Akaki ◽  
Souleymane Méité ◽  
Françis Adou Yapo ◽  
...  

Aims: The pathophysiology of Plasmodium falciparum infection is most often associated with anemia and immune deficiency. Given the important role of vitamin D in the synthesis of hemoglobin and in the stimulation of the immune system, it would be essential to assess the vitamin D status of patients with malaria in order to improve the quality of treatment management. Methodology: A thick drop and a blood smear were used to determine parasite density and parasite species respectively. The complete blood count was performed using an automated analyzer labelled Sysmex XN 1000i. Biochemical parameters such as calcium and phosphorus were determined using the Cobas C311 Hitachi. The Vidas was used to determine the concentrations of 25 (OH) -vitamin D. Results: The results showed a decrease in 25 (OH) -vitamin D concentrations in relation to the parasite density and anemia observed in patients with uncomplicated malaria. Conclusion: Vitamin D status in patients with uncomplicated malaria could represent an essential biomarker in the monitoring of antimalarial treatment.


2014 ◽  
Vol 15 (4) ◽  
pp. S27
Author(s):  
M. Petrov ◽  
T. Glover ◽  
B. Goodin ◽  
L. Bradley ◽  
R. Fillingim

Sign in / Sign up

Export Citation Format

Share Document