scholarly journals Kefir Peptides Prevent Estrogen Deficiency-Induced Bone Loss and Modulate the Structure of the Gut Microbiota in Ovariectomized Mice

Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3432
Author(s):  
Min-Yu Tu ◽  
Kuei-Yang Han ◽  
Gary Ro-Lin Chang ◽  
Guan-Da Lai ◽  
Ku-Yi Chang ◽  
...  

Osteoporosis is a major skeletal disease associated with estrogen deficiency in postmenopausal women. Kefir-fermented peptides (KPs) are bioactive peptides with health-promoting benefits that are produced from the degradation of dairy milk proteins by the probiotic microflora in kefir grains. This study aimed to evaluate the effects of KPs on osteoporosis prevention and the modulation of the composition of the gut microbiota in ovariectomized (OVX) mice. OVX mice receiving an 8-week oral gavage of 100 mg of KPs and 100 mg of KPs + 10 mg Ca exhibited lower trabecular separation (Tb. Sp), and higher bone mineral density (BMD), trabecular number (Tb. N) and bone volume (BV/TV), than OVX groups receiving Ca alone and untreated mice, and these effects were also reflected in bones with better mechanical properties of strength and fracture toughness. The gut microbiota of the cecal contents was examined by 16S rDNA amplicon sequencing. α-Diversity analysis indicated that the gut microbiota of OVX mice was enriched more than that of sham mice, but the diversity was not changed significantly. Treatment with KPs caused increased microbiota richness and diversity in OVX mice compared with those in sham mice. The microbiota composition changed markedly in OVX mice compared with that in sham mice. Following the oral administration of KPs for 8 weeks, the abundances of Alloprevotella, Anaerostipes, Parasutterella, Romboutsia, Ruminococcus_1 and Streptococcus genera were restored to levels close to those in the sham group. However, the correlation of these bacterial populations with bone metabolism needs further investigation. Taken together, KPs prevent menopausal osteoporosis and mildly modulate the structure of the gut microbiota in OVX mice.

2020 ◽  
Author(s):  
Xu Lin ◽  
Hong-Mei Xiao ◽  
Hui-Min Liu ◽  
Wan-Qiang Lv ◽  
Jonathan Greenbaum ◽  
...  

AbstractAlthough gut microbiota influences osteoporosis risk, the individual species involved, and underlying mechanisms, are unknown. We performed integrative analyses in a Chinese cohort with metagenomics/targeted metabolomics/whole-genome sequencing. Bacteroides vulgatus was found negatively associated with bone mineral density (BMD), this association was validated in US Caucasians. Serum valeric acid was positively associated with BMD, and B.vulgatus causally downregulated it. Ovariectomized mice fed B.vulgatus had decreased bone formation and increased bone resorption, lower BMD and poorer bone micro-structure. Valeric acid suppressed NF-κB p65 protein production (pro-inflammatory), and enhanced IL-10 mRNA expression (anti-inflammatory), leading to suppressed maturation of osteoclast-like cells, and enhanced maturation of osteoblasts in vitro. B.vulgatus and valeric acid represent promising targets for osteoporosis prevention/treatment.


2021 ◽  
Author(s):  
Peng Chen ◽  
Chen Wang ◽  
Yan-na Ren ◽  
Zeng-jie Ye ◽  
Chao Jiang ◽  
...  

Abstract The aim of this study was to explore the relationships among gut microbiota disturbances and serum and spinal cord metabolic disorders in neuropathic pain. 16S rDNA amplicon sequencing and serum and spinal cord metabolomics were used to identify alterations in the microbiota and metabolite profiles in the sham rats and the chronic constriction injury (CCI) model rats. Correlations between the abundances of gut microbiota components at the genus level, the levels of serum metabolites, and pain-related behavioural parameters were analysed. Ingenuity pathway analysis (IPA) was applied to analyse the interaction networks of the differentially expressed serum metabolites. First, we found that the composition of the gut microbiota was different between rats with CCI-induced neuropathic pain and sham controls. At the genus level, the abundances of Helicobacter, Phascolarctobacterium, Christensenella, Blautia, Streptococcus, Rothia and Lactobacillus were significantly increased, whereas the abundances of Ignatzschineria, Butyricimonas, Escherichia, AF12, and Corynebacterium were significantly decreased. Additionally, 72 significantly differentially expressed serum metabolites and 17 significantly differentially expressed spinal cord metabolites were identified between the CCI rats and the sham rats. Finally, correlation analysis showed that changes in the gut microbiota was significantly correlated with changes in serum metabolite levels, suggesting that dysbiosis of the gut microbiota is an important factor in modulating metabolic disturbances in the context of neuropathic pain. In conclusion, our research provides a novel perspective on the potential roles of the gut microbiota and related metabolites in neuropathic pain.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuxiao Liao ◽  
Dan Li ◽  
Xiaolei Zhou ◽  
Zhao Peng ◽  
Zitong Meng ◽  
...  

Background: The previous studies demonstrated that there might be complex and close relationships among leucine supplementation, gut microbiota, and muscle health, which still needs further investigation.Aims: This study aimed to explore the associations of gut microbiota with muscle health after leucine intake.Methods: In this study, 19-month-old male C57BL/6j mice (n = 12/group) were supplemented with ultrapure water, low dose of leucine (500 mg/kg·d), and high dose of leucine (1,250 mg/kg·d) for 12 weeks by oral gavage. The mice fecal samples in each group before and after supplementation were collected for baseline and endpoint gut microbiota analysis by using 16S rDNA amplicon sequencing. Meanwhile, ultrasound measurement, H&E staining, myofiber cross-sectional area (CSA) measurement, and western blotting were performed in the quadriceps subsequently. The pyruvate levels were detected in feces.Results: Improvement in muscle of histology and ultrasonography were observed after both low and high dose of leucine supplementation. High dose of leucine supplementation could promote skeletal muscle health in aging mice via regulating AMPKα/SIRT1/PGC-1α. The richness and diversities of microbiota as well as enriched metabolic pathways were altered after leucine supplementation. Firmicutes-Bacteroidetes ratio was significantly decreased in high-leucine group. Moreover, pyruvate fermentation to propanoate I were negatively associated with differential species and the pyruvate levels were significantly increased in feces after high dose of leucine supplementation.Conclusions: Chronic high dose of leucine supplementation changed gut microbiota composition and increased pyruvate levels in the feces, which possibly provides a novel direction for promoting muscle health in aging mice.


Author(s):  
shiren sun ◽  
Ruijuan Dong ◽  
Ming Bai ◽  
Jin Zhao ◽  
Di Wang ◽  
...  

Abstract Background The pathogenesis of immunoglobulin A nephropathy (IgAN) and membranous nephropathy (MN) is characterized by immune dysregulation, which is related to gut dysbiosis. The aim of the study was to compare the gut microbiota of patients with IgAN and MN versus healthy controls. We used 16S rDNA amplicon sequencing to investigate the bacterial communities of 44 patients with kidney biopsy-proven IgAN, 40 patients with kidney biopsy-proven MN, and 30 matched healthy controls (HC). Results The abundance of Escherichia-Shigella and Defluviitaleaceae_incertae_sedis were significantly higher in IgAN than in HC, whereas lower abundances were observed for Roseburia, Lachnospiraceae_ unclassified, Clostridium_sensu_stricto_1, and Fusobacterium . Furthermore, the abundance of Escherichia-Shigella, Peptostreptococcaceae_incertae_sedis , Streptococcus, and Enterobacteriaceae_ unclassified increased, while that of Lachnospira, Lachnospiraceae_ unclassified, Clostridium_sensu_stricto_1, and Veillonella decreased in MN. The abundance of Megasphaera and Bilophila was higher, whereas that of Megamonas, Veillonella, Klebsiella, and Streptococcus was lower in patients with IgAN than in those with MN. Analysis of the correlations showed that in the IgAN group, Prevotella was positively correlated, while Klebsiella , Citrobacter, and Fusobacterium were negatively correlated with the level of serum albumin. Positive correlation also existed between Bilophila and Crescents in the Oxford classification of IgAN. In the MN group, negative correlation was observed between Escherichia-Shigella and proteinuria, Bacteroides and Klebsiella showed positive correlation with the MN stage. Conclusions Patients with IgAN and MN exhibited gut microbial signatures distinct from healthy controls. Our study suggests the potential of gut microbiota as specific biomarker and contributor in the pathogenesis of IgAN and MN.


Author(s):  
Muhong Wei ◽  
Can Li ◽  
Yu Dai ◽  
Haolong Zhou ◽  
Yuan Cui ◽  
...  

ObjectiveAccumulative evidence suggests that gut microbiota play an important role in bone remodeling and hence bone health maintenance. This study aimed to explore the association of gut microbiota with the risk of osteoporosis and to identify potential disease-related taxa, which may be promising targets in osteoporosis prevention and treatment in the future.MethodsAbsolute quantification 16S ribosomal RNA gene sequencing was used to detect absolute and relative abundances of gut microbiota in 44 patients with osteoporosis and 64 controls. In combination with one of our previous studies, a total of 175 samples were involved in the relative abundance analysis.ResultsCompared with the controls, the patients with osteoporosis had higher absolute and relative abundances of Bacteroidetes phylum, and Bacteroides and Eisenbergiella genera. The absolute abundances of Clostridium_XlVa, Coprococcus, Lactobacillus, and Eggerthella genera increased, and that of the Veillonella genus decreased in the osteoporosis group. As for relative abundance, that of the Parabacteroides and Flavonifractor genera increased, whereas that of the Raoultella genus decreased in the osteoporosis group. Controlling for potential confounders, the associations of Clostridium_XlVa, Coprococcus, and Veillonella genera with the risk of osteoporosis did not maintain significance. Ridge regression analysis suggested that Bacteroides is associated with reduced bone mineral density (BMD) and T-score at lumbar spines, and Anaerovorax is associated with increased BMD at the femoral neck. Functional predictions revealed that 10 Kyoto Encyclopedia of Genes and Genomes pathways were enriched in the osteoporosis group.ConclusionsGut microbiota compositions may contribute to the risk of osteoporosis. Several specific taxa and functional pathways are identified to associate with reduced bone density, thus providing epidemiologic evidence for the potential role of aberrant gut microbiota in osteoporosis pathogenesis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259530
Author(s):  
Jing Jiang ◽  
Hao Liu ◽  
Zidong Wang ◽  
Huiling Tian ◽  
Shun Wang ◽  
...  

Alzheimer’s disease (AD), as one of most common dementia, mainly affects older people from the worldwide. In this study, we intended to explore the possible mechanism of improving cognitive function and protecting the neuron effect by electroacupuncture. Method: We applied senescence-accelerated mouse prone 8 (SAMP8) mice as AD animal model, used Morris water maze, HE staining, 16S rDNA amplicon sequencing of gut microbiota and ELISA to demonstrate our hypothesis. Results: electroacupuncture improved the learning and memory abilities in SAMP8 mice (P<0.05) and could protect the frontal lobe cortex and hippocampus of SAMP8 mice; electroacupuncture significantly decreased the expression of IL-1β (P<0.01), IL-6 (P<0.01) and TNF-α (P<0.01 in hippocampus, P<0.05 in serum) in serum and hippocampus; electroacupuncture balanced the quantity and composition of gut microbiome, especially of the relative abundance in Delta-proteobacteria (P<0.05) and Epsilon-proteobacteria (P<0.05). Conclusion: electroacupuncture treatment could inhibit the peripheral and central nerve system inflammatory response by balancing the gut microbiota.


Endocrinology ◽  
2021 ◽  
Author(s):  
Joo-Hee Choi ◽  
Ah-Ra Jang ◽  
Min-Jung Park ◽  
Dong-il Kim ◽  
Jong-Hwan Park

Abstract Melatonin, a pineal gland hormone, has been suggested to treat postmenopausal osteoporosis due to its inhibitory effect on osteoclast differentiation. We previously reported that protein arginine methyltransferase 1 (PRMT1) was an important mediator of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. However, the relationship between melatonin and PRMT1 in osteoclast differentiation and estrogen deficiency-induced osteoporosis is unclear. In this study, we investigated the inhibitory mechanisms of melatonin in vitro and in vivo by focusing on PRMT1. Melatonin treatment effectively blocked RANKL-induced osteoclastogenesis by inhibiting PRMT1 and asymmetric dimethylarginine (ADMA) expression. RANKL-induced tumor necrosis factor receptor-associated factor 6 (TRAF6) and the phosphorylation of JNK were also suppressed by melatonin, and TRAF6 siRNA attenuated RANKL-induced p-JNK and PRMT1 production. Melatonin inhibited the transcriptional activity of NF-κB by interfering with the binding of PRMT1 and NF-κB subunit p65 in RANKL-treated BMDMs. Our results also revealed that melatonin inhibits RANKL-induced PRMT1 expression through receptors-independent pathway. Thus, the anti-osteoclastogenic effect of melatonin was mediated by a cascade of inhibition of RANKL-induced TRAF6, JNK, PRMT1, and NF-κB signaling in melatonin receptors-independent pathway. In vivo, ovariectomy caused significant decreases in bone mineral density, but melatonin treatment alleviated the ovariectomized (OVX)-induced bone loss by inhibiting bone resorption. Furthermore, the expression PRMT1 and TRAP mRNA was upregulated in OVX-femurs, but effectively suppressed by melatonin injection. These findings suggest that melatonin inhibited osteoclast differentiation and estrogen deficiency-induced osteoporosis by suppressing RANKL-induced TRAF6, JNK, PRMT1, and NF-κB signaling cascades in melatonin receptors-independent pathway.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Jung-Lye Kim ◽  
Yun-Ho Kim ◽  
Min-Kyung Kang ◽  
Ju-Hyun Gong ◽  
Seoung-Jun Han ◽  
...  

Bone integrity abnormality and imbalance between bone formation by osteoblasts and bone resorption by osteoclasts are known to result in metabolic bone diseases such as osteoporosis. Silymarin-rich milk thistle extract (MTE) and its component silibinin enhanced alkaline phosphatase activity of osteoblasts but reduced tartrate-resistant acid phosphatase (TRAP) activity of osteoclasts. The osteoprotective effects of MTE were comparable to those of estrogenic isoflavone. Low-dose combination of MTE and isoflavone had a pharmacological synergy that may be useful for osteogenic activity. This study attempted to reveal the suppressive effects of MTE on bone loss. C57BL/6 female mice were ovariectomized (OVX) as a model for postmenopausal osteopenia and orally administered 10 mg/kg MTE or silibinin for 8 weeks. The sham-operated mice served as estrogen controls. The treatment of ovariectomized mice with nontoxic MTE and silibinin improved femoral bone mineral density and serum receptor activator of nuclear factor-κB ligand/osteoprotegerin ratio, an index of osteoclastogenic stimulus. In addition, the administration of MTE or silibinin inhibited femoral bone loss induced by ovariectomy and suppressed femoral TRAP activity and cathepsin K induction responsible for osteoclastogenesis and bone resorption. Collectively, oral dosage of MTE containing silibinin in the preclinical setting is effective in preventing estrogen deficiency-induced bone loss.


2021 ◽  
Vol 9 (2) ◽  
pp. 391
Author(s):  
Shyam Sundar Paul ◽  
Rudra Nath Chatterjee ◽  
Mantena Venkata Lakshmi Narasimha Raju ◽  
Bhukya Prakash ◽  
Savaram Venkata Rama Rao ◽  
...  

Gut microbiota plays an important role in the health and performance of the host. Characterizations of gut microbiota, core microbiomes, and microbial networks in different chicken breeds are expected to provide clues for pathogen exclusion, improving performance or feed efficiency. Here, we characterized the gut microbiota of “finishing” chickens (at the end of production life) of indigenous Indian Nicobari, Ghagus, and Aseel breeds, originating from the Nicobari island, coastal India, and the Indian mainland, respectively, as well as a global commercial broiler line, VenCobb 400, using 16S rDNA amplicon sequencing. We found that diversity, as well as richness of microbiota, was higher in indigenous breeds than in the broiler line. Beta diversity analysis indicated the highest overlap between Ghagus and Nicobari breeds and a very low overlap between the broiler line and all indigenous breeds. Linear discriminant analysis effect size (LEfSe) revealed 82 breed- or line-specific phylotype operational taxonomic unit (OTU) level biomarkers. We confirm the presence of breed specific and across-breed core microbiomes. Additionally, we show the existence of breed specific complex microbial networks in all groups. This study provides the first (and comprehensive) insight into the gut microbiota of three indigenous breeds and one commercial broiler line of chickens reared without antimicrobials, and underscores the need to study microbial diversity in other indigenous breeds.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Peng Chen ◽  
Chen Wang ◽  
Yan-na Ren ◽  
Zeng-jie Ye ◽  
Chao Jiang ◽  
...  

AbstractThe aim of this study was to explore the relationships among gut microbiota disturbances and serum and spinal cord metabolic disorders in neuropathic pain. 16S rDNA amplicon sequencing and serum and spinal cord metabolomics were used to identify alterations in the microbiota and metabolite profiles in the sham rats and the chronic constriction injury (CCI) model rats. Correlations between the abundances of gut microbiota components at the genus level, the levels of serum metabolites, and pain-related behavioural parameters were analysed. Ingenuity pathway analysis (IPA) was applied to analyse the interaction networks of the differentially expressed serum metabolites. First, we found that the composition of the gut microbiota was different between rats with CCI-induced neuropathic pain and sham controls. At the genus level, the abundances of Helicobacter, Phascolarctobacterium, Christensenella, Blautia, Streptococcus, Rothia and Lactobacillus were significantly increased, whereas the abundances of Ignatzschineria, Butyricimonas, Escherichia, AF12, and Corynebacterium were significantly decreased. Additionally, 72 significantly differentially expressed serum metabolites and 17 significantly differentially expressed spinal cord metabolites were identified between the CCI rats and the sham rats. Finally, correlation analysis showed that changes in the gut microbiota was significantly correlated with changes in serum metabolite levels, suggesting that dysbiosis of the gut microbiota is an important factor in modulating metabolic disturbances in the context of neuropathic pain. In conclusion, our research provides a novel perspective on the potential roles of the gut microbiota and related metabolites in neuropathic pain.


Sign in / Sign up

Export Citation Format

Share Document