scholarly journals Asprosin—A Fasting-Induced, Glucogenic, and Orexigenic Adipokine as a New Promising Player. Will It Be a New Factor in the Treatment of Obesity, Diabetes, or Infertility? A Review of the Literature

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 620
Author(s):  
Agnieszka Irena Mazur-Bialy

Asprosin is a recently discovered protein released during fasting conditions mainly by adipocytes from white adipose tissue. As a glucogenic peptide, it stimulates the release of glucose from hepatic cells by binding to the OLFR734 receptor and leading to the activation of the G protein-cAMP-PKA pathway. As it crosses the blood–brain barrier, it also acts as an orexigenic peptide that stimulates food intake through activation of AgRP neurons in the hypothalamus; thus, asprosin participates in maintaining the body’s energy homeostasis. Moreover, studies have shown that asprosin levels are pathologically elevated in obesity and related diseases. However, the administration of anti-asprosin antibodies can both normalize its concentration and reduce food intake in obese mice, which makes it an interesting factor to combat obesity and related diseases. Current research also draws attention to the relationship between asprosin and fertility, especially in men. Asprosin improves age- and obesity-related decrease in fertility potential by improving sperm motility. It should also be mentioned that plasma asprosin levels can be differentially modulated by physical activity; intense anaerobic exercise increases asprosin level, while aerobic exercise decreases it. However, further research is necessary to confirm the exact mechanisms of asprosin activity and its potential as a therapeutic target.

2021 ◽  
Vol 12 ◽  
Author(s):  
Li Wang ◽  
Chao-Chao Yu ◽  
Jia Li ◽  
Qing Tian ◽  
Yan-Jun Du

Obesity is a prevalent metabolic disease caused by an imbalance in food intake and energy expenditure. Although acupuncture is widely used in the treatment of obesity in a clinical setting, its mechanism has not been adequately elucidated. As the key pivot of appetite signals, the hypothalamus receives afferent and efferent signals from the brainstem and peripheral tissue, leading to the formation of a complex appetite regulation circuit, thereby effectively regulating food intake and energy homeostasis. This review mainly discusses the relationship between the hypothalamic nuclei, related neuropeptides, brainstem, peripheral signals, and obesity, as well as mechanisms of acupuncture on obesity from the perspective of the hypothalamus, exploring the current evidence and therapeutic targets for mechanism of action of acupuncture in obesity.


Endocrinology ◽  
2009 ◽  
Vol 150 (7) ◽  
pp. 3101-3109 ◽  
Author(s):  
Andrea Peier ◽  
Jennifer Kosinski ◽  
Kimberly Cox-York ◽  
Ying Qian ◽  
Kunal Desai ◽  
...  

Neuromedin U (NMU) and neuromedin S (NMS) are structurally related neuropeptides that have been reported to modulate energy homeostasis. Pharmacological data have shown that NMU and NMS inhibit food intake when administered centrally and that NMU increases energy expenditure. Additionally, NMU-deficient mice develop obesity, whereas transgenic mice overexpressing NMU are lean and hypophagic. Two high-affinity NMU/NMS receptors, NMUR1 and NMUR2, have been identified. NMUR1 is predominantly expressed in the periphery, whereas NMUR2 is predominantly expressed in the brain, suggesting that the effects of centrally administered NMU and NMS are mediated by NMUR2. To evaluate the role of NMUR2 in the regulation of energy homeostasis, we characterized NMUR2-deficient (Nmur2−/−) mice. Nmur2−/− mice exhibited a modest resistance to diet-induced obesity that was at least in part due to reduced food intake. Acute central administration of NMU and NMS reduced food intake in wild-type but not in Nmur2−/− mice. The effects on activity and core temperature induced by centrally administered NMU were also absent in Nmur2−/− mice. Moreover, chronic central administration of NMU and NMS evoked significant reductions in body weight and sustained reductions in food intake in mice. In contrast, Nmur2−/− mice were largely resistant to these effects. Collectively, these data demonstrate that the anorectic and weight-reducing actions of centrally administered NMU and NMS are mediated predominantly by NMUR2, suggesting that NMUR2-selective agonists may be useful for the treatment of obesity.


2004 ◽  
Vol 180 (2) ◽  
pp. 267-271 ◽  
Author(s):  
EE Onal ◽  
P Cinaz ◽  
Y Atalay ◽  
C Turkyilmaz ◽  
A Bideci ◽  
...  

Ghrelin is a newly discovered orexigenic peptide originating from the stomach. Circulating ghrelin levels reflect acute and chronic energy balance in humans. However, it is not known whether ghrelin also plays a role in energy homeostasis during fetal life. Forty-one small-for-gestational age (SGA) and 34 appropriate-for-gestational age (AGA) infants were studied in order to determine whether cord blood ghrelin concentrations were different in SGA infants compared with AGA infants and the relationship to anthropometric measurements at delivery. The cord blood ghrelin concentrations of SGA infants (means+/-S.E.M.; 15.20+/-3.08 ng/ml) were significantly greater than of AGA infants (2.19+/-0.24 ng/ml) (P<0.0001). They were negatively correlated with the infants' birth weights (r=-0.481, P<0.0001) and with body mass index values (r=-0.363, P<0.001). The higher ghrelin concentrations were found in female infants (20.42+/-4.55 ng/ml) than in males (7.05+/-2.27 ng/ml) in the SGA group (P=0.042). These data provide the first evidence that cord ghrelin levels of SGA infants are greater than those of AGA infants and it is suggested that ghrelin is also affected by nutritional status in the intrauterine period.


2006 ◽  
Vol 190 (2) ◽  
pp. 515-525 ◽  
Author(s):  
Anthony P Coll ◽  
Martin Fassnacht ◽  
Steffen Klammer ◽  
Stephanie Hahner ◽  
Dominik M Schulte ◽  
...  

Pro-opiomelanocortin (POMC) is a polypeptide precursor that undergoes extensive processing to yield a range of peptides with biologically diverse functions. POMC-derived ACTH is vital for normal adrenal function and the melanocortin α-MSH plays a key role in appetite control and energy homeostasis. However, the roles of peptide fragments derived from the highly conserved N-terminal region of POMC are less well characterized. We have used mice with a null mutation in the Pomc gene (Pomc−/−) to determine the in vivo effects of synthetic N-terminal 1–28 POMC, which has been shown previously to possess adrenal mitogenic activity. 1–28 POMC (20 μg) given s.c. for 10 days had no effect on the adrenal cortex of Pomc−/− mice, with resultant cortical morphology and plasma corticosterone levels being indistinguishable from sham treatment. Concurrent administration of 1–28 POMC and 1–24 ACTH (30 μg/day) resulted in changes identical to 1–24 ACTH treatment alone, which consisted of upregulation of steroidogenic enzymes, elevation of corticosterone levels, hypertrophy of the zona fasciculate, and regression of the X-zone. However, treatment of corticosterone-depleted Pomc−/− mice with 1–28 POMC reduced cumulative food intake and total body weight. These anorexigenic effects were ameliorated when the peptide was administered to Pomc−/− mice with circulating corticosterone restored either to a low physiological level by corticosterone-supplemented drinking water (CORT) or to a supraphysiological level by concurrent 1–24 ACTH administration. Further, i.c.v. administration of 1–28 POMC to CORT-treated Pomc−/− mice had no effect on food intake or body weight. In wild-type mice, the effects of 1–28 POMC upon food intake and body weight were identical to sham treatment, but 1–28 POMC was able to ameliorate the hyperphagia induced by concurrent 1–24 ACTH treatment. In a mouse model which lacks all endogenous POMC peptides, s.c. treatment with synthetic 1–28 POMC alone can reduce food intake and body weight, but has no impact upon adrenal growth or steroidogenesis.


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Gul Tiryaki-Sonmez ◽  
Serife Vatansever ◽  
Burcin Olcucu ◽  
Brad Schoenfeld

SummaryObesity, a disorder of body composition, is defined by a relative or absolute excess of body fat. In general adult population, obesity has been associated with a diverse array of adverse health outcomes, including major causes of death such as cancer, diabetes, cardiovascular disease, as well as functional impairment from problems such as osteoarthritis and sleep apnea. Ghrelin is a newly discovered peptide hormone which plays an important role in obesity. It is a powerful, endogenous orexigenic peptide and has a crucial function in appetite regulation, as well as short – and long-term energy homeostasis. In the presence of increased obesity, decreased physical activity, and high food consumption, the relationship between exercise, appetite, food intake and ghrelin levels has important implications. In this review, we discuss the effect of acute and chronic exercise performance on appetite, food intake and ghrelin and their relationships.


1996 ◽  
Vol 271 (1) ◽  
pp. R180-R184 ◽  
Author(s):  
E. E. Ladenheim ◽  
J. E. Taylor ◽  
D. H. Coy ◽  
K. A. Moore ◽  
T. H. Moran

Bombesin (BN)-like peptides injected peripherally or centrally suppress food intake in rats. The relationship between the central and peripheral actions of BN is unknown. However, experimental evidence supports a critical role for the caudal hindbrain in mediating the feeding effects of BN. To investigate this relationship further, we examined the ability of fourth ventricular infusion of a specific gastrin-releasing peptide (GRP) antagonist, [D-F5, Phe6, D-Ala11]BN-(6-13) methyl ester (BN-ME), to block suppression of glucose intake (0.5 kcal/ml) produced by intraperitoneal administration of GRP-(18-27) in 5-h food-deprived male Sprague-Dawley rats (n = 10). We found that fourth ventricular administration of 10, 32, and 100 ng BN-ME blocked the suppression of glucose intake produced by peripherally administered 10 nmol/kg GRP-(18-27). The most effective dose of BN-ME (100 ng) blocked the ability of peripheral injection of GRP-(18-27) to inhibit glucose intake but had no effect on intake when given alone. These results demonstrate that the availability of caudal hindbrain GRP receptors is necessary for peripherally administered GRP-(18-27) to reduce food intake in rats.


2021 ◽  
Vol 28 ◽  
Author(s):  
Pilar Marcos Rabal ◽  
Rafael Coveñas

: Obesity leads to several metabolic disorders and, unfortunately, current pharmacological treatments for obesity are not very effective. In feeding mechanisms, the hypothalamus and some neuropeptides play an important role. Many data show that neuropeptide Y (NPY) is involved in these mechanisms. The aim of this review is to update the physiological actions mediated by the orexigenic peptide NPY, via its receptors, in the control of food intake and to review its involvement in food intake disorders. The relationships between NPY and other substances involved in food intake mechanisms, hypothalamic and extra-hypothalamic pathways involved in feeding and the potential pharmacological strategies to treat obesity will be discussed. Some research lines, focused on NPY, to be developed in the future are suggested. Neuropeptide systems are associated with redundancy and then therapies directed against a single target are generally ineffective. For this reason, other targets for the treatment of obesity are mentioned. It seems that combination therapies are the best option for successful anti-obesity treatments: new and more specific NPY receptor antagonists must be tested as anti-obesity drugs alone and in combination therapies.


2001 ◽  
Vol 13 (8) ◽  
pp. 577 ◽  
Author(s):  
Iain J. Clarke

Seasonal changes in voluntary food intake (VFI) are seen in various species, including sheep. This paper reviews recent work in this area, especially in relation to alterations in the expression of appetite-regulating peptides in the brain of the sheep. Work in the hamster is also reviewed because this is another species in which VFI is regulated by photoperiod. In normally grazing sheep, appetite is maximal in the late summer/early autumn and minimal in spring. This appears to be owing to increased expression of the orexigenic peptide, neuropeptide Y. Similar results are obtained in sheep that are subjected to controlled photoperiod. The same does not appear to be true for hamsters. Further work in sheep has shown that there is a seasonal pattern of responsiveness to leptin that is more pronounced in females than in males. In particular, the effect of leptin to reduce food intake is maximal in female sheep in the spring; reasons for the sex difference are discussed.


2002 ◽  
Vol 2002 ◽  
pp. 100-100
Author(s):  
F. Rosi ◽  
D. Magistrelli ◽  
F. Vitrani

The 16kDa peptide hormone leptin is an adipose tissue-derived regulator of food intake and energy homeostasis, and a signal of the status of body energy stores to the brain. Plasma levels of leptin reflect body fat mass in humans, rodents and ruminants (Houseknecht et al., 1998; Delavaud et al., 2000). The aim of this study was to investigate circadian rhythms of plasma leptin and other metabolic variables in rabbits, to assess the influence of the timing of food intake and to investigate the relationship between leptin and lipid metabolites.


Endocrinology ◽  
2006 ◽  
Vol 147 (12) ◽  
pp. 5940-5947 ◽  
Author(s):  
Y. C. Loraine Tung ◽  
Sarah J. Piper ◽  
Debra Yeung ◽  
Stephen O’Rahilly ◽  
Anthony P. Coll

Functional disruption of either MC3R or MC4R results in obesity, implicating both in the control of energy homeostasis. The ligands for these receptors are derived from the prohormone proopiomelancortin (POMC), which is posttranslationally processed to produce a set of melanocortin peptides with a range of activities at the MC3R and MC4R. The relative importance of each of these peptides α-MSH, γ3-MSH, γ2-MSH, γ-lipotropin (γ-LPH) and, in man but not in rodents, β-MSH] in the maintenance of energy homeostasis is, as yet, unclear. To investigate this further, equimolar amounts (2 nmol) of each peptide were centrally administered to freely feeding, corticosterone-supplemented, Pomc null (Pomc−/−) mice. After a single dose at the onset of the dark cycle, α-MSH had the most potent anorexigenic effect, reducing food intake to 35% of sham-treated animals. β-MSH, γ-LPH, and γ3- and γ2-MSH all reduced food intake but to a lesser degree. The effects of peptide administration over 3 d were also assessed. Only α-MSH significantly reduced body weight, affecting both fat and lean mass. Other peptides had no significant effect on body weight. Pair-feeding of sham-treated mice to those treated with α-MSH resulted in identical changes in total weight, fat and lean mass indicating that the effects of α-MSH were primarily due to reduced food intake rather than increased energy expenditure. Although other melanocortins can reduce food intake in the short-term, only α-MSH can reduce the excess fat and lean mass found in Pomc−/− mice, mediated largely through an effect on food intake.


Sign in / Sign up

Export Citation Format

Share Document