scholarly journals Obesity, food intake and exercise: Relationship with ghrelin

2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Gul Tiryaki-Sonmez ◽  
Serife Vatansever ◽  
Burcin Olcucu ◽  
Brad Schoenfeld

SummaryObesity, a disorder of body composition, is defined by a relative or absolute excess of body fat. In general adult population, obesity has been associated with a diverse array of adverse health outcomes, including major causes of death such as cancer, diabetes, cardiovascular disease, as well as functional impairment from problems such as osteoarthritis and sleep apnea. Ghrelin is a newly discovered peptide hormone which plays an important role in obesity. It is a powerful, endogenous orexigenic peptide and has a crucial function in appetite regulation, as well as short – and long-term energy homeostasis. In the presence of increased obesity, decreased physical activity, and high food consumption, the relationship between exercise, appetite, food intake and ghrelin levels has important implications. In this review, we discuss the effect of acute and chronic exercise performance on appetite, food intake and ghrelin and their relationships.

2005 ◽  
Vol 85 (4) ◽  
pp. 1131-1158 ◽  
Author(s):  
Sarah Stanley ◽  
Katie Wynne ◽  
Barbara McGowan ◽  
Stephen Bloom

Our knowledge of the physiological systems controlling energy homeostasis has increased dramatically over the last decade. The roles of peripheral signals from adipose tissue, pancreas, and the gastrointestinal tract reflecting short- and long-term nutritional status are now being described. Such signals influence central circuits in the hypothalamus, brain stem, and limbic system to modulate neuropeptide release and hence food intake and energy expenditure. This review discusses the peripheral hormones and central neuronal pathways that contribute to control of appetite.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1109
Author(s):  
Robert Bock ◽  
Björn Kleinsteinberg ◽  
Bjørn Selnes-Volseth ◽  
Odne Stokke Burheim

For renewable energies to succeed in replacing fossil fuels, large-scale and affordable solutions are needed for short and long-term energy storage. A potentially inexpensive approach of storing large amounts of energy is through the use of a concentration flow cell that is based on cheap and abundant materials. Here, we propose to use aqueous iron chloride as a reacting solvent on carbon electrodes. We suggest to use it in a red-ox concentration flow cell with two compartments separated by a hydrocarbon-based membrane. In both compartments the red-ox couple of iron II and III reacts, oxidation at the anode and reduction at the cathode. When charging, a concentration difference between the two species grows. When discharging, this concentration difference between iron II and iron III is used to drive the reaction. In this respect it is a concentration driven flow cell redox battery using iron chloride in both solutions. Here, we investigate material combinations, power, and concentration relations.


Author(s):  
Alessandro Antonelli ◽  
Clodoveo Ferri ◽  
Poupak Fallahi

The liver plays a significant role in glucose, lipid, insulin, glucagon, thyroid, and steroid hormone metabolism, and in energy homeostasis. Therefore, it is unsurprising that liver diseases are associated with a wide spectrum of endocrinological disorders. The most frequent causes of liver disorders in the general adult population of the USA are non-alcoholic fatty liver disease, hepatitis C, excessive alcohol intake, haemochromatosis, and hepatitis B (1).


Diabetes ◽  
2010 ◽  
Vol 59 (4) ◽  
pp. 894-906 ◽  
Author(s):  
A. S. Reed ◽  
E. K. Unger ◽  
L. E. Olofsson ◽  
M. L. Piper ◽  
M. G. Myers ◽  
...  

2015 ◽  
Vol 103 (3-4) ◽  
pp. 223-229 ◽  
Author(s):  
Melissa L. Borg ◽  
Alex Reichenbach ◽  
Moyra Lemus ◽  
Brian J. Oldfield ◽  
Zane B. Andrews ◽  
...  

1995 ◽  
Vol 268 (1) ◽  
pp. R142-R149 ◽  
Author(s):  
A. M. Strack ◽  
R. J. Sebastian ◽  
M. W. Schwartz ◽  
M. F. Dallman

Signals that regulate long-term energy balance have been difficult to identify. Increasingly strong evidence indicates that insulin, acting on the central nervous system in part through its effect on neuropeptide Y (NPY), inhibits food intake. We hypothesized that corticosteroids and insulin might serve as interacting, reciprocal signals for energy balance, acting on energy acquisition, in part through their effects on hypothalamic NPY, as well as on energy stores. Because glucocorticoids also stimulate insulin secretion, their role is normally obscured. Glucocorticoids and insulin were clamped in adrenalectomized rats with steroid replacement and streptozotocin-induced diabetes. Glucocorticoids stimulated and insulin inhibited NPY mRNA and food intake. Glucocorticoids inhibited and insulin increased energy gain as determined by the change in body weight. When adrenalectomized diabetic rats were treated, corticosterone stimulated and insulin inhibited food intake, and, respectively, inhibited and increased overall energy gain. More than 50% of the variance was explained by regression analysis of the two hormones on food intake and body weight. Thus glucocorticoids and insulin are major, antagonistic, long-term regulators of energy balance. The effects of corticosterone and insulin on food intake may be mediated, in part, through regulation of hypothalamic NPY synthesis and secretion.


Sign in / Sign up

Export Citation Format

Share Document