Hindbrain GRP receptor blockade antagonizes feeding suppression by peripherally administered GRP
Bombesin (BN)-like peptides injected peripherally or centrally suppress food intake in rats. The relationship between the central and peripheral actions of BN is unknown. However, experimental evidence supports a critical role for the caudal hindbrain in mediating the feeding effects of BN. To investigate this relationship further, we examined the ability of fourth ventricular infusion of a specific gastrin-releasing peptide (GRP) antagonist, [D-F5, Phe6, D-Ala11]BN-(6-13) methyl ester (BN-ME), to block suppression of glucose intake (0.5 kcal/ml) produced by intraperitoneal administration of GRP-(18-27) in 5-h food-deprived male Sprague-Dawley rats (n = 10). We found that fourth ventricular administration of 10, 32, and 100 ng BN-ME blocked the suppression of glucose intake produced by peripherally administered 10 nmol/kg GRP-(18-27). The most effective dose of BN-ME (100 ng) blocked the ability of peripheral injection of GRP-(18-27) to inhibit glucose intake but had no effect on intake when given alone. These results demonstrate that the availability of caudal hindbrain GRP receptors is necessary for peripherally administered GRP-(18-27) to reduce food intake in rats.