scholarly journals Peripheral administration of the N-terminal pro-opiomelanocortin fragment 1–28 to Pomc−/− mice reduces food intake and weight but does not affect adrenal growth or corticosterone production

2006 ◽  
Vol 190 (2) ◽  
pp. 515-525 ◽  
Author(s):  
Anthony P Coll ◽  
Martin Fassnacht ◽  
Steffen Klammer ◽  
Stephanie Hahner ◽  
Dominik M Schulte ◽  
...  

Pro-opiomelanocortin (POMC) is a polypeptide precursor that undergoes extensive processing to yield a range of peptides with biologically diverse functions. POMC-derived ACTH is vital for normal adrenal function and the melanocortin α-MSH plays a key role in appetite control and energy homeostasis. However, the roles of peptide fragments derived from the highly conserved N-terminal region of POMC are less well characterized. We have used mice with a null mutation in the Pomc gene (Pomc−/−) to determine the in vivo effects of synthetic N-terminal 1–28 POMC, which has been shown previously to possess adrenal mitogenic activity. 1–28 POMC (20 μg) given s.c. for 10 days had no effect on the adrenal cortex of Pomc−/− mice, with resultant cortical morphology and plasma corticosterone levels being indistinguishable from sham treatment. Concurrent administration of 1–28 POMC and 1–24 ACTH (30 μg/day) resulted in changes identical to 1–24 ACTH treatment alone, which consisted of upregulation of steroidogenic enzymes, elevation of corticosterone levels, hypertrophy of the zona fasciculate, and regression of the X-zone. However, treatment of corticosterone-depleted Pomc−/− mice with 1–28 POMC reduced cumulative food intake and total body weight. These anorexigenic effects were ameliorated when the peptide was administered to Pomc−/− mice with circulating corticosterone restored either to a low physiological level by corticosterone-supplemented drinking water (CORT) or to a supraphysiological level by concurrent 1–24 ACTH administration. Further, i.c.v. administration of 1–28 POMC to CORT-treated Pomc−/− mice had no effect on food intake or body weight. In wild-type mice, the effects of 1–28 POMC upon food intake and body weight were identical to sham treatment, but 1–28 POMC was able to ameliorate the hyperphagia induced by concurrent 1–24 ACTH treatment. In a mouse model which lacks all endogenous POMC peptides, s.c. treatment with synthetic 1–28 POMC alone can reduce food intake and body weight, but has no impact upon adrenal growth or steroidogenesis.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lucas Zangerolamo ◽  
Carina Solon ◽  
Gabriela M. Soares ◽  
Daiane F. Engel ◽  
Licio A. Velloso ◽  
...  

AbstractAlzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia. While cognitive deficits remain the major manifestation of AD, metabolic and non-cognitive abnormalities, such as alterations in food intake, body weight and energy balance are also present, both in AD patients and animal models. In this sense, the tauroursodeoxycholic acid (TUDCA) has shown beneficial effects both in reducing the central and cognitive markers of AD, as well as in attenuating the metabolic disorders associated with it. We previously demonstrated that TUDCA improves glucose homeostasis and decreases the main AD neuromarkers in the streptozotocin-induced AD mouse model (Stz). Besides that, TUDCA-treated Stz mice showed lower body weight and adiposity. Here, we investigated the actions of TUDCA involved in the regulation of body weight and adiposity in Stz mice, since the effects of TUDCA in hypothalamic appetite control and energy homeostasis have not yet been explored in an AD mice model. The TUDCA-treated mice (Stz + TUDCA) displayed lower food intake, higher energy expenditure (EE) and respiratory quotient. In addition, we observed in the hypothalamus of the Stz + TUDCA mice reduced fluorescence and gene expression of inflammatory markers, as well as normalization of the orexigenic neuropeptides AgRP and NPY expression. Moreover, leptin-induced p-JAK2 and p-STAT3 signaling in the hypothalamus of Stz + TUDCA mice was improved, accompanied by reduced acute food intake after leptin stimulation. Taken together, we demonstrate that TUDCA treatment restores energy metabolism in Stz mice, a phenomenon that is associated with reduced food intake, increased EE and improved hypothalamic leptin signaling. These findings suggest treatment with TUDCA as a promising therapeutic intervention for the control of energy homeostasis in AD individuals.


Endocrinology ◽  
2006 ◽  
Vol 147 (12) ◽  
pp. 5940-5947 ◽  
Author(s):  
Y. C. Loraine Tung ◽  
Sarah J. Piper ◽  
Debra Yeung ◽  
Stephen O’Rahilly ◽  
Anthony P. Coll

Functional disruption of either MC3R or MC4R results in obesity, implicating both in the control of energy homeostasis. The ligands for these receptors are derived from the prohormone proopiomelancortin (POMC), which is posttranslationally processed to produce a set of melanocortin peptides with a range of activities at the MC3R and MC4R. The relative importance of each of these peptides α-MSH, γ3-MSH, γ2-MSH, γ-lipotropin (γ-LPH) and, in man but not in rodents, β-MSH] in the maintenance of energy homeostasis is, as yet, unclear. To investigate this further, equimolar amounts (2 nmol) of each peptide were centrally administered to freely feeding, corticosterone-supplemented, Pomc null (Pomc−/−) mice. After a single dose at the onset of the dark cycle, α-MSH had the most potent anorexigenic effect, reducing food intake to 35% of sham-treated animals. β-MSH, γ-LPH, and γ3- and γ2-MSH all reduced food intake but to a lesser degree. The effects of peptide administration over 3 d were also assessed. Only α-MSH significantly reduced body weight, affecting both fat and lean mass. Other peptides had no significant effect on body weight. Pair-feeding of sham-treated mice to those treated with α-MSH resulted in identical changes in total weight, fat and lean mass indicating that the effects of α-MSH were primarily due to reduced food intake rather than increased energy expenditure. Although other melanocortins can reduce food intake in the short-term, only α-MSH can reduce the excess fat and lean mass found in Pomc−/− mice, mediated largely through an effect on food intake.


2021 ◽  
Vol 12 ◽  
Author(s):  
Clinton T. Elfers ◽  
James E. Blevins ◽  
Elizabeth A. Lawson ◽  
Richard Pittner ◽  
David Silva ◽  
...  

Background: Oxytocin is a hypothalamic neuropeptide that participates in the network of appetite regulation. Recently the oxytocin signaling pathway has emerged as an attractive target for treating obesity. However, the short half-life limits its development as a clinical therapeutic. Here we provide results from testing a long-lasting, potent and selective oxytocin analog ASK1476 on its efficacy to reduce food intake and body weight in comparison to the native oxytocin peptide.Methods: ASK1476 features two specific amino acid substitutions in positions 7 and 8 combined with a short polyethylene glycol spacer. Short time dose escalation experiments testing increasing doses of 3 days each were performed in diet-induced overweight (DIO) male rats assessing effects on body weight as well as changes in food intake. Furthermore, DIO rats were tested for changes in body weight, food intake, temperature, and locomotor activity over 28 days of treatment (oxytocin, ASK1476, or vehicle).Results: In dose escalation experiments, significant reductions in food intake relative to baseline were detected beginning with doses of 15 nmol/kg ASK1476 (−15.2 ± 2.3 kcal/d, p = 0.0017) and 20 nmol/kg oxytocin (−11.2.9 ± 2.4 kcal/d, p = 0.0106) with corresponding significant changes in body weight (ASK1476: −5.2 ± 0.8 g, p = 0.0016; oxytocin: −2.6 ± 0.7 g, p = 0.0326). In long-term experiments, there was no difference on body weight change between 120 nmol/kg/d ASK1476 (−71.4 ± 34.2 g, p = 0.039) and 600 nmol/kg/d oxytocin (−91.8 ± 32.2 g, p = 0.035) relative to vehicle (706.9 ± 28.3 g), indicating a stronger dose response for ASK1476. Likewise, both ASK1476 and oxytocin at these doses resulted in similar reductions in 28-day cumulative food intake (ASK1476: −562.7 ± 115.0 kcal, p = 0.0001; oxytocin: −557.1 ± 101.3 kcal, p = 0.0001) relative to vehicle treatment (2716 ± 75.4 kcal), while no effects were detected on locomotor activity or body temperature.Conclusion: This study provides proof-of-concept data demonstrating an oxytocin analog with extended in vivo stability and improved potency to reduce food intake and body weight in DIO animals which could mark a new avenue in anti-obesity drug interventions.


Endocrinology ◽  
2012 ◽  
Vol 153 (10) ◽  
pp. 4687-4695 ◽  
Author(s):  
Kristy M. Heppner ◽  
Nilika Chaudhary ◽  
Timo D. Müller ◽  
Henriette Kirchner ◽  
Kirk M. Habegger ◽  
...  

Abstract Ghrelin is a gastrointestinal polypeptide that acts through the ghrelin receptor (GHSR) to promote food intake and increase adiposity. Activation of GHSR requires the presence of a fatty-acid (FA) side chain on amino acid residue serine 3 of the ghrelin molecule. However, little is known about the role that the type of FA used for acylation plays in the biological action of ghrelin. We therefore evaluated a series of differentially acylated peptides to determine whether alterations in length or stability of the FA side chain have an impact on the ability of ghrelin to activate GHSR in vitro or to differentially alter food intake, body weight, and body composition in vivo. Fatty acids principally available in the diet (such as palmitate C16) and therefore representing potential substrates for the ghrelin-activating enzyme ghrelin O-acyltransferase (GOAT) were used for dose-, time-, and administration/route-dependent effects of ghrelin on food intake, body weight, and body composition in rats and mice. Our data demonstrate that altering the length of the FA side chain of ghrelin results in the differential activation of GHSR. Additionally, we found that acylation of ghrelin with a long-chain FA (C16) delays the acute central stimulation of food intake. Lastly, we found that, depending on acylation length, systemic and central chronic actions of ghrelin on adiposity can be enhanced or reduced. Together our data suggest that modification of the FA side-chain length can be a novel approach to modulate the efficacy of pharmacologically administered ghrelin.


2019 ◽  
Vol 18 (7) ◽  
pp. 516-522
Author(s):  
Néstor F. Díaz ◽  
Héctor Flores-Herrera ◽  
Guadalupe García-López ◽  
Anayansi Molina-Hernández

The brain histaminergic system plays a pivotal role in energy homeostasis, through H1- receptor activation, it increases the hypothalamic release of histamine that decreases food intake and reduces body weight. One way to increase the release of hypothalamic histamine is through the use of antagonist/inverse agonist for the H3-receptor. Histamine H3-receptors are auto-receptors and heteroreceptors located on the presynaptic membranes and cell soma of neurons, where they negatively regulate the synthesis and release of histamine and other neurotransmitters in the central nervous system. Although several compounds acting as H3-receptor antagonist/inverse agonists have been developed, conflicting results have been reported and only one has been tested as anti-obesity in humans. Animal studies revealed the opposite effect in food intake, energy expeditor, and body weight, depending on the drug, spice, and route of administration, among others. The present review will explore the state of art on the effects of H3-receptor ligands on appetite and body-weight, going through the following: a brief overview of the circuit involved in the control of food intake and energy homeostasis, the participation of the histaminergic system in food intake and body weight, and the H3-receptor as a potential therapeutic target for obesity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Renata R. Braga ◽  
Barbara M. Crisol ◽  
Rafael S. Brícola ◽  
Marcella R. Sant’ana ◽  
Susana C. B. R. Nakandakari ◽  
...  

AbstractThe maintenance of mitochondrial activity in hypothalamic neurons is determinant to the control of energy homeostasis in mammals. Disturbs in the mitochondrial proteostasis can trigger the mitonuclear imbalance and mitochondrial unfolded protein response (UPRmt) to guarantee the mitochondrial integrity and function. However, the role of mitonuclear imbalance and UPRmt in hypothalamic cells are unclear. Combining the transcriptomic analyses from BXD mice database and in vivo experiments, we demonstrated that physical training alters the mitochondrial proteostasis in the hypothalamus of C57BL/6J mice. This physical training elicited the mitonuclear protein imbalance, increasing the mtCO-1/Atp5a ratio, which was accompanied by high levels of UPRmt markers in the hypothalamus. Also, physical training increased the maximum mitochondrial respiratory capacity in the brain. Interestingly, the transcriptomic analysis across several strains of the isogenic BXD mice revealed that hypothalamic mitochondrial DNA-encoded genes were negatively correlated with body weight and several genes related to the orexigenic response. As expected, physical training reduced body weight and food intake. Interestingly, we found an abundance of mt-CO1, a mitochondrial DNA-encoded protein, in NPY-producing neurons in the lateral hypothalamus nucleus of exercised mice. Collectively, our data demonstrated that physical training altered the mitochondrial proteostasis and induced the mitonuclear protein imbalance and UPRmt in hypothalamic cells.


2018 ◽  
Vol 315 (1) ◽  
pp. E29-E37 ◽  
Author(s):  
Mariana Peduti Halah ◽  
Paula Beatriz Marangon ◽  
Jose Antunes-Rodrigues ◽  
Lucila L. K. Elias

Neonatal nutritional changes induce long-lasting effects on energy homeostasis. Adiponectin influences food intake and body weight. The aim of this study was to investigate the effects of neonatal nutritional programming on the central stimulation of adiponectin. Male Wistar rats were divided on postnatal (PN) day 3 in litters of 3 (small litter, SL), 10 (normal litter, NL), or 16 pups/dam (large litter, LL). We assessed body weight gain for 60 days, adiponectin concentration, and white adipose tissue weight. We examined the response of SL, NL, and LL rats on body weight gain, food intake, oxygen consumption (V̇o2), respiratory exchange ratio (RER), calorimetry, locomotor activity, phosphorylated-AMP-activated protein kinase (AMPK) expression in the hypothalamus, and uncoupling protein (UCP)-1 in the brown adipose tissue after central stimulus with adiponectin. After weaning, SL rats maintained higher body weight gain despite similar food intake compared with NL rats. LL rats showed lower body weight at weaning, with a catch up afterward and higher food intake. Both LL and SL groups had decreased plasma concentrations of adiponectin at PN60. SL rats had increased white adipose tissue. Central injection of adiponectin decreased body weight and food intake and increased V̇o2, RER, calorimetry, p-AMPK and UCP- 1 expression in NL rats, but it had no effect on SL and LL rats, compared with the respective vehicle groups. In conclusion, neonatal under- and overfeeding induced an increase in body weight gain in juvenile and early adult life. Unresponsiveness to central effects of adiponectin contributes to the imbalance of the energy homeostasis in adult life induced by neonatal nutritional programming.


2012 ◽  
Vol 303 (8) ◽  
pp. R850-R860 ◽  
Author(s):  
Miriam Goebel-Stengel ◽  
Andreas Stengel ◽  
Lixin Wang ◽  
Gordon Ohning ◽  
Yvette Taché ◽  
...  

Various molecular forms of CCK reduce food intake in rats. Although CCK-8 is the most studied form, we reported that CCK-58 is the only detectable endocrine peptide form in rats. We investigated the dark-phase rat chow intake pattern following injection of CCK-8 and CCK-58. Ad libitum-fed male Sprague-Dawley rats were intraperitoneally injected with CCK-8, CCK-58 (0.6, 1.8, and 5.2 nmol/kg), or vehicle. Food intake pattern was assessed during the dark phase using an automated weighing system that allowed continuous undisturbed monitoring of physiological eating behavior. Both CCK-8 and CCK-58 dose dependently reduced 1-h, dark-phase food intake, with an equimolar dose of 1.8 nmol being similarly effective (−49% and −44%). CCK-58 increased the latency to the first meal, whereas CCK-8 did not. The intermeal interval was reduced after CCK-8 (1.8 nmol/kg, −41%) but not after CCK-58. At this dose, CCK-8 increased the satiety ratio by 80% and CCK-58 by 160%, respectively, compared with vehicle. When behavior was assessed manually, CCK-8 reduced locomotor activity (−31%), whereas grooming behavior was increased (+59%). CCK-58 affected neither grooming nor locomotor activity. In conclusion, reduction of food intake by CCK-8 and CCK-58 is achieved by differential modulation of food intake microstructure and behavior. These data highlight the importance of studying the molecular forms of peptides that exist in vivo in tissue and circulation of the animal being studied.


Endocrinology ◽  
1997 ◽  
Vol 138 (4) ◽  
pp. 1413-1418 ◽  
Author(s):  
Patricia Grasso ◽  
Matthew C. Leinung ◽  
Stacy P. Ingher ◽  
Daniel W. Lee

Abstract In C57BL/6J ob/ob mice, a single base mutation of the ob gene in codon 105 results in the replacement of arginine by a premature stop codon and production of a truncated inactive form of leptin. These observations suggest that leptin activity may be localized, at least in part, to domains distal to amino acid residue 104. To investigate this possibility, we synthesized six overlapping peptide amides corresponding to residues 106–167 of leptin, and examined their effects on body weight and food intake in female C57BL/6J ob/ob mice. When compared with vehicle-injected control mice, weight gain by mice receiving 28 daily 1-mg ip injections of LEP-(106–120), LEP-(116–130), or LEP-(126–140) was significantly (P < 0.01) reduced with no apparent toxicity. Weight gain by mice receiving LEP-(136–150), LEP-(146–160), or LEP-(156–167) was not significantly different from that of vehicle-injected control mice. The effects of LEP-(106–120), LEP-(116–130), or LEP-(126–140) were most pronounced during the first week of peptide treatment. Within 7 days, mice receiving these peptides lost 12.3%, 13.8%, and 9.8%, respectively, of their initial body weights. After 28 days, mice given vehicle alone, LEP-(136–150), LEP-(146–160), or LEP-(156–167) were 14.7%, 20.3%, 25.0%, and 24.8% heavier, respectively, than they were at the beginning of the study. Mice given LEP-(106–120) or LEP-(126–140) were only 1.8% and 4.2% heavier, respectively, whereas mice given LEP-(116–130) were 3.4% lighter. Food intake by mice receiving LEP-(106–120), LEP-(116–130), or LEP-(126–140), but not by mice receiving LEP-(136–150), LEP-(146–160), or LEP-(156–167), was reduced by 15%. The results of this study indicate 1) that leptin activity is localized, at least in part, in domains between residues 106–140; 2) that leptin-related peptides have in vivo effects similar to those of native leptin; and 3) offer hope for development of peptide analogs of leptin having potential application in human or veterinary medicine.


Sign in / Sign up

Export Citation Format

Share Document