scholarly journals The Immunomodulatory Effects of Honey and Associated Flavonoids in Cancer

Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1269
Author(s):  
Razan J. Masad ◽  
Shoja M. Haneefa ◽  
Yassir A. Mohamed ◽  
Ashraf Al-Sbiei ◽  
Ghada Bashir ◽  
...  

Honey has exerted a high impact in the field of alternative medicine over many centuries. In addition to its wound healing, anti-microbial and antioxidant properties, several lines of evidence have highlighted the efficiency of honey and associated bioactive constituents as anti-tumor agents against a range of cancer types. Mechanistically, honey was shown to inhibit cancer cell growth through its pro-apoptotic, anti-proliferative and anti-metastatic effects. However, the potential of honey to regulate anti-tumor immune responses is relatively unexplored. A small number of in vitro and in vivo studies have demonstrated the ability of honey to modulate the immune system by inducing immunostimulatory as well as anti-inflammatory effects. In the present review, we summarize the findings from different studies that aimed to investigate the immunomodulatory properties of honey and its flavonoid components in relation to cancer. While these studies provide promising data, additional research is needed to further elucidate the immunomodulatory properties of honey, and to enable its utilization as an adjuvant therapy in cancer.


Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1973 ◽  
Author(s):  
Bhagavathi Sivamaruthi ◽  
Periyanaina Kesika ◽  
Mani Prasanth ◽  
Chaiyavat Chaiyasut

In general, fermented foods (FFs) are considered as functional foods. Since the awareness about the health benefits of FFs has increased, the consumption of FF also improved significantly in recent decades. Diabetes is one of the leading threats of the health span of an individual. The present manuscript details the general methods of the production of FFs, and the results of various studies (in vitro, in vivo, and clinical studies) on the antidiabetic properties of FFs. The fermentation method and the active microbes involved in the process play a crucial role in the functional properties of FFs. Several in vitro and in vivo studies have been reported on the health-promoting properties of FFs, such as anti-inflammation, anticancer, antioxidant properties, improved cognitive function and gastrointestinal health, and the reduced presence of metabolic disorders. The studies on the functional properties of FFs by randomized controlled clinical trials using human volunteers are very limited for several reasons, including ethical reasons, safety concerns, approval from the government, etc. Several scientific teams are working on the development of complementary and alternative medicines to improve the treatment strategies for hyperglycemia.



Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1291 ◽  
Author(s):  
Rita Crinelli ◽  
Carolina Zara ◽  
Michaël Smietana ◽  
Michele Retini ◽  
Mauro Magnani ◽  
...  

Glutathione (GSH) has poor pharmacokinetic properties; thus, several derivatives and biosynthetic precursors have been proposed as GSH-boosting drugs. I-152 is a conjugate of N-acetyl-cysteine (NAC) and S-acetyl-β-mercaptoethylamine (SMEA) designed to release the parent drugs (i.e., NAC and β-mercaptoethylamine or cysteamine, MEA). NAC is a precursor of L-cysteine, while MEA is an aminothiol able to increase GSH content; thus, I-152 represents the very first attempt to combine two pro-GSH molecules. In this review, the in-vitro and in-vivo metabolism, pro-GSH activity and antiviral and immunomodulatory properties of I-152 are discussed. Under physiological GSH conditions, low I-152 doses increase cellular GSH content; by contrast, high doses cause GSH depletion but yield a high content of NAC, MEA and I-152, which can be used to resynthesize GSH. Preliminary in-vivo studies suggest that the molecule reaches mouse organs, including the brain, where its metabolites, NAC and MEA, are detected. In cell cultures, I-152 replenishes experimentally depleted GSH levels. Moreover, administration of I-152 to C57BL/6 mice infected with the retroviral complex LP-BM5 is effective in contrasting virus-induced GSH depletion, exerting at the same time antiviral and immunomodulatory functions. I-152 acts as a pro-GSH agent; however, GSH derivatives and NAC cannot completely replicate its effects. The co-delivery of different thiol species may lead to unpredictable outcomes, which warrant further investigation.



Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2243 ◽  
Author(s):  
Ranjini Sankaranarayanan ◽  
D. Ramesh Kumar ◽  
Janki Patel ◽  
G. Jayarama Bhat

Despite decades of research to elucidate the cancer preventive mechanisms of aspirin and flavonoids, a consensus has not been reached on their specific modes of action. This inability to accurately pinpoint the mechanism involved is due to the failure to differentiate the primary targets from its associated downstream responses. This review is written in the context of the recent findings on the potential pathways involved in the prevention of colorectal cancers (CRC) by aspirin and flavonoids. Recent reports have demonstrated that the aspirin metabolites 2,3-dihydroxybenzoic acid (2,3-DHBA), 2,5-dihydroxybenzoic acid (2,5-DHBA) and the flavonoid metabolites 2,4,6-trihydroxybenzoic acid (2,4,6-THBA), 3,4-dihydroxybenzoic acid (3,4-DHBA) and 3,4,5-trihydroxybenzoic acid (3,4,5-THBA) were effective in inhibiting cancer cell growth in vitro. Limited in vivo studies also provide evidence that some of these hydroxybenzoic acids (HBAs) inhibit tumor growth in animal models. This raises the possibility that a common pathway involving HBAs may be responsible for the observed cancer preventive actions of aspirin and flavonoids. Since substantial amounts of aspirin and flavonoids are left unabsorbed in the intestinal lumen upon oral consumption, they may be subjected to degradation by the host and bacterial enzymes, generating simpler phenolic acids contributing to the prevention of CRC. Interestingly, these HBAs are also abundantly present in fruits and vegetables. Therefore, we suggest that the HBAs produced through microbial degradation of aspirin and flavonoids or those consumed through the diet may be common mediators of CRC prevention.



Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5430-5430
Author(s):  
Stefanie Koristka ◽  
Marc Cartellieri ◽  
Anja Feldmann ◽  
Claudia Arndt ◽  
Irene Michalk ◽  
...  

Abstract Regulatory T cells (Tregs) play an inevitable role in immune homeostasis by maintaining self-tolerance as well as regulating the magnitude of immune responses against foreign antigens. Over the last few years, the enormous potential of adoptive Treg transfer for treatment of auto- and alloimmunity including Graft-versus-Host disease (GvHD) has been validated in a vast number of in vitro and in vivo studies. For their clinical application, all modes of action should be well understood. Regarding their cytotoxic potential, only few and conflicting data exist. On the one hand, it is assumed that Tregs are capable of inducing apoptosis of effector T cells (Teff) utilizing granzyme/perforin or FasL expression. Others claim that Tregs are not capable of suppressing Teff via programmed cell death pathways but rather induce apoptosis by cytokine deprivation. However, it is of importance to clarify whether Tregs possess a cytotoxic potential particularly when activating the cells antigen-specifically using bispecific antibodies (bsAb). In recent years, bsAb have emerged as promising tools for an antigen-specific immunotherapy of malignant diseases. Their tremendous potential for tumor therapy has been verified in a plethora of in vitro and in vivo studies as well as in first clinical trials. So far, our group was able to demonstrate that not only Teff but also Tregs can be redirected by CD3-engaging bsAb (Koristka et al., J Immunol. 2012; J Autoimmun. 2013). According to a recent presentation (Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research, 2012, abstract nr 4841), bsAb-redirected Tregs can act as killer cells and efficiently mediate cancer cell lysis. In order to shed light onto this controversial issue, we decided to analyze this question in more detail. According to our investigations tumor cell elimination of bsAb-engaged Tregs is largely dependent on the purity of isolated Treg fractions. Tregs isolated on the basis of CD25 expression exhibited a remarkable killing capacity which is most probably due to contaminating CD25+FOXP3- Teff, as highly pure (> 99 %), FACS-isolated CD4+CD25+CD127low Tregs did not display any considerable cytotoxic effect upon cross-linkage to tumor cells via bsAb. The same applies for CD45RA-sorted, expanded Tregs. In comparison to autologous, expanded Teff, tumor cell lysis was negligible. Moreover, the lack of cytotoxicity was independent of the chosen target antigen, as redirecting Tregs with two different bsAb did not result in tumor cell eradication. Besides, upon polyclonal stimulation with conventional aCD3/CD28-coated beads Tregs were not capable of eliminating target cells. Furthermore, as opposed to autologous Teff, Tregs showed only a marginal upregulation of the degranulation marker CD107a when being activated either antigen-specifically via bsAb or polyclonally via beads. Taken together, our findings clearly demonstrate that Tregs bear no considerable cytotoxic potential and hence do not contribute to cancer cell lysis, as recently claimed. On the other hand, the results show that Tregs can be activated by bsAb without the risk of cytotoxic effects against the recognized target cells. This provides the basis for the application of bsAb for a site-specific recruitment of Tregs aiming at attenuating Teff-mediated proinflammatory immune responses and tissue destruction in order to treat auto- and alloimmune diseases including GvHD. Disclosures: No relevant conflicts of interest to declare.





2021 ◽  
Author(s):  
Pedro Ferreira-Santos ◽  
Zlatina Genisheva ◽  
Claudia Botelho ◽  
Cristina Rocha ◽  
José António Teixeira

The significant increase in the world population age, 47 years in 1950 to 73 years in 2020, resulted in an increase in aging related diseases as well as in degenerative diseases. In consequence, researchers have been focusing in the development of new therapies, with a particular emphasis on the use of compounds with antioxidant properties, namely phytochemicals, such as polyphenols and carotenoids. Several in vitro and in vivo studies have demonstrated the phytochemicals antioxidant capacity. Their use is broad, as they can be part of food supplements, medicine and cosmetics. The health benefit of antioxidant phytochemicals is an indisputable question. Phytochemical properties are highly influenced by the natural matrix as well as by extraction process, which have a key role. There are several extraction methods that can be applied depending on the chemical properties of the bioactive compounds. There is a wide range of solvents with different polarities, which allows a selective extraction of the desired target family of compounds. Greener technologies have the advantage to reduce extraction time and solvent quantity in comparison to the most traditional methods. This chapter will focus on the different green extraction strategies related to the recovery of antioxidant bioactive compounds from natural sources, their nutritional and health potential.



Author(s):  
Oyindamola Vivian Ojulari ◽  
Seul Gi Lee ◽  
Ju-Ock Nam

Present-day lifestyles associated with high calorie-fat intake and accumulation, as well as energy imbalance, has led to the development of obesity and its comorbidities, which have emerged as some of the major health issues globally. To combat the disease, many studies have reported the anti-obesity effects of natural compounds in foods, with some advantages over chemical treatments. Carotenoids, particularly xanthophyll derived from seaweeds, have attracted the attention of researchers due to their notable biological activities, which are associated mainly with their antioxidant properties. Their involvement in oxidative stress modulation, regulation of major transcription factors and enzymes as well as their antagonistic effects on various obesity parameters have been examined in both in-vitro and in-vivo studies. The present review is a collation of published research over the last decade on the anti-oxidant properties of seaweed xanthophyll carotenoids, with a focus on fucoxanthin and astaxanthin and their mechanisms of action in obesity prevention and treatment.



2020 ◽  
Vol 21 (19) ◽  
pp. 7177
Author(s):  
Nikita Simone Pillay ◽  
Aliscia Daniels ◽  
Moganavelli Singh

Current chemotherapeutic drugs, although effective, lack cell-specific targeting, instigate adverse side effects in healthy tissue, exhibit unfavourable bio-circulation and can generate drug-resistant cancers. The synergistic use of nanotechnology and gene therapy, using nanoparticles (NPs) for therapeutic gene delivery to cancer cells is hereby proposed. This includes the benefit of cell-specific targeting and exploitation of receptors overexpressed in specific cancer types. The aim of this study was to formulate dendrimer-functionalized selenium nanoparticles (PAMAM-SeNPs) containing the targeting moiety, folic acid (FA), for delivery of pCMV-Luc-DNA (pDNA) in vitro. These NPs and their gene-loaded nanocomplexes were physicochemically and morphologically characterized. Nucleic acid-binding, compaction and pDNA protection were assessed, followed by cell-based in vitro cytotoxicity, transgene expression and apoptotic assays. Nanocomplexes possessed favourable sizes (<150 nm) and ζ-potentials (>25 mV), crucial for cellular interaction, and protected the pDNA from degradation in an in vivo simulation. PAMAM-SeNP nanocomplexes exhibited higher cell viability (>85%) compared to selenium-free nanocomplexes (approximately 75%), confirming the important role of selenium in these nanocomplexes. FA-conjugated PAMAM-SeNPs displayed higher overall transgene expression (HeLa cells) compared to their non-targeting counterparts, suggesting enhanced receptor-mediated cellular uptake. Overall, our results bode well for the use of these nano-delivery vehicles in future in vivo studies.



2020 ◽  
Vol 20 (11) ◽  
pp. 988-1000 ◽  
Author(s):  
Bellamkonda Bosebabu ◽  
Sri Pragnya Cheruku ◽  
Mallikarjuna Rao Chamallamudi ◽  
Madhavan Nampoothiri ◽  
Rekha R. Shenoy ◽  
...  

Sesame (Sesamum indicum L.) seeds have been authenticated for its medicinal value in both Chinese and Indian systems of medicine. Its numerous potential nutritional benefits are attributed to its main bioactive constituents, sesamol. As a result of those studies, several molecular mechanisms are emerging describing the pleiotropic biological effects of sesamol. This review summarized the most interesting in vitro and in vivo studies on the biological effects of sesamol. The present work summarises data available from Pubmed and Scopus database. Several molecular mechanisms have been elucidated describing the pleiotropic biological effects of sesamol. Its major therapeutic effects have been elicited in managing oxidative and inflammatory conditions, metabolic syndrome and mood disorders. Further, compelling evidence reflected the ability of sesamol in inhibiting proliferation of the inflammatory cell, prevention of invasion and angiogenesis via affecting multiple molecular targets and downstream mechanisms. Sesamol is a safe, non‐toxic chemical that mediates anti‐inflammatory effects by down‐regulating the transcription of inflammatory markers such as cytokines, redox status, protein kinases, and enzymes that promote inflammation. In addition, sesamol also induces apoptosis in cancer cells via mitochondrial and receptor‐mediated pathways, as well as activation of caspase cascades. In the present review, several pharmacological effects of sesamol are summarised namely, antioxidant, anti-cancer, neuroprotective, cardioprotective, anti-inflammatory, hypolipidemic, radioprotective, anti-aging, anti-ulcer, anti-dementia, anti-depressant, antiplatelet, anticonvulsant, anti-anxiolytic, wound healing, cosmetic (skin whitening), anti-microbial, matrix metalloproteinase (MMPs) inhibition, hepatoprotective activity and other biological effects. Here we have summarized the proposed mechanism behind these pharmacological effects.



Biomolecules ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1139 ◽  
Author(s):  
Georg Sandner ◽  
Mara Heckmann ◽  
Julian Weghuber

Recently, the application of herbal medicine for the prevention and treatment of diseases has gained increasing attention. Essential oils (EOs) are generally known to exert various pharmacological effects, such as antiallergic, anticancer, anti-inflammatory, and immunomodulatory effects. Current literature involving in vitro and in vivo studies indicates the potential of various herbal essential oils as suitable immunomodulators for the alternative treatment of infectious or immune diseases. This review highlights the cellular effects induced by EOs, as well as the molecular impacts of EOs on cytokines, immunoglobulins, or regulatory pathways. The results reviewed in this article revealed a significant reduction in relevant proinflammatory cytokines, as well as induction of anti-inflammatory markers. Remarkably, very little clinical study data involving the immunomodulatory effects of EOs are available. Furthermore, several studies led to contradictory results, emphasizing the need for a multiapproach system to better characterize EOs. While immunomodulatory effects were reported, the toxic potential of EOs must be clearly considered in order to secure future applications.



Sign in / Sign up

Export Citation Format

Share Document