scholarly journals Infant Gut Microbiota Associated with Fine Motor Skills

Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1673
Author(s):  
Inmaculada Acuña ◽  
Tomás Cerdó ◽  
Alicia Ruiz ◽  
Francisco J. Torres-Espínola ◽  
Ana López-Moreno ◽  
...  

BACKGROUND: During early life, dynamic gut colonization and brain development co-occur with potential cross-talk mechanisms affecting behaviour. METHODS: We used 16S rRNA gene sequencing to examine the associations between gut microbiota and neurodevelopmental outcomes assessed by the Bayley Scales of Infant Development III in 71 full-term healthy infants at 18 months of age. We hypothesized that children would differ in gut microbial diversity, enterotypes obtained by Dirichlet multinomial mixture analysis and specific taxa based on their behavioural characteristics. RESULTS: In children dichotomized by behavioural trait performance in above- and below-median groups, weighted Unifrac b-diversity exhibited significant differences in fine motor (FM) activity. Dirichlet multinomial mixture modelling identified two enterotypes strongly associated with FM outcomes. When controlling for maternal pre-gestational BMI and breastfeeding for up to 3 months, the examination of signature taxa in FM groups showed that Turicibacter and Parabacteroides were highly abundant in the below-median FM group, while Collinsella, Coprococcus, Enterococcus, Fusobacterium, Holdemanella, Propionibacterium, Roseburia, Veillonella, an unassigned genus within Veillonellaceae and, interestingly, probiotic Bifidobacterium and Lactobacillus were more abundant in the above-median FM group. CONCLUSIONS: Our results suggest an association between enterotypes and specific genera with FM activity and may represent an opportunity for probiotic interventions relevant to treatment for motor disorders.

Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 254
Author(s):  
Ying Wang ◽  
Jianqing Zhu ◽  
Jie Fang ◽  
Li Shen ◽  
Shuojia Ma ◽  
...  

We characterized the gut microbial composition and relative abundance of gut bacteria in the larvae and adults of Pieris canidia by 16S rRNA gene sequencing. The gut microbiota structure was similar across the life stages and sexes. The comparative functional analysis on P. canidia bacterial communities with PICRUSt showed the enrichment of several pathways including those for energy metabolism, immune system, digestive system, xenobiotics biodegradation, transport, cell growth and death. The parameters often used as a proxy of insect fitness (development time, pupation rate, emergence rate, adult survival rate and weight of 5th instars larvae) showed a significant difference between treatment group and untreated group and point to potential fitness advantages with the gut microbiomes in P. canidia. These data provide an overall view of the bacterial community across the life stages and sexes in P. canidia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vanessa Palmas ◽  
Silvia Pisanu ◽  
Veronica Madau ◽  
Emanuela Casula ◽  
Andrea Deledda ◽  
...  

AbstractIn the present study, we characterized the distinctive signatures of the gut microbiota (GM) from overweight/obese patients (OB), and normal-weight controls (NW), both of Sardinian origin. Fecal bacterial composition of 46 OB patients (BMI = 36.6 ± 6.0; F/M = 40/6) was analyzed and compared to that of 46 NW subjects (BMI = 21.6 ± 2.1; F/M = 41/5), matched for sex, age and smoking status, by using 16S rRNA gene sequencing on MiSeq Illumina platform. The gut microbial community of OB patients exhibited a significant decrease in the relative abundance of several Bacteroidetes taxa (i.e. Flavobacteriaceae, Porphyromonadaceae, Sphingobacteriaceae, Flavobacterium, Rikenella spp., Pedobacter spp., Parabacteroides spp., Bacteroides spp.) when compared to NW; instead, several Firmicutes taxa were significantly increased in the same subjects (Lachnospiraceae, Gemellaceae, Paenibacillaceae, Streptococcaceae, Thermicanaceae, Gemella, Mitsuokella, Streptococcus, Acidaminococcus spp., Eubacterium spp., Ruminococcus spp., Megamonas spp., Streptococcus, Thermicanus, Megasphaera spp. and Veillonella spp.). Correlation analysis indicated that body fatness and waist circumference negatively correlated with Bacteroidetes taxa, while Firmicutes taxa positively correlated with body fat and negatively with muscle mass and/or physical activity level. Furthermore, the relative abundance of several bacterial taxa belonging to Enterobacteriaceae family, known to exhibit endotoxic activity, was increased in the OB group compared to NW. The results extend our knowledge on the GM profiles in Italian OB, identifying novel taxa linking obesity and intestine.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shenhai Gong ◽  
Yinglin Feng ◽  
Yunong Zeng ◽  
Huanrui Zhang ◽  
Meiping Pan ◽  
...  

Abstract Background Gut microbiota has been reported to be disrupted by cisplatin, as well as to modulate chemotherapy toxicity. However, the precise role of intestinal microbiota in the pathogenesis of cisplatin hepatotoxicity remains unknown. Methods We compared the composition and function of gut microbiota between mice treated with and without cisplatin using 16S rRNA gene sequencing and via metabolomic analysis. For understanding the causative relationship between gut dysbiosis and cisplatin hepatotoxicity, antibiotics were administered to deplete gut microbiota and faecal microbiota transplantation (FMT) was performed before cisplatin treatment. Results 16S rRNA gene sequencing and metabolomic analysis showed that cisplatin administration caused gut microbiota dysbiosis in mice. Gut microbiota ablation by antibiotic exposure protected against the hepatotoxicity induced by cisplatin. Interestingly, mice treated with antibiotics dampened the mitogen-activated protein kinase pathway activation and promoted nuclear factor erythroid 2-related factor 2 nuclear translocation, resulting in decreased levels of both inflammation and oxidative stress in the liver. FMT also confirmed the role of microbiota in individual susceptibility to cisplatin-induced hepatotoxicity. Conclusions This study elucidated the mechanism by which gut microbiota mediates cisplatin hepatotoxicity through enhanced inflammatory response and oxidative stress. This knowledge may help develop novel therapeutic approaches that involve targeting the composition and metabolites of microbiota.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francesco Durazzi ◽  
Claudia Sala ◽  
Gastone Castellani ◽  
Gerardo Manfreda ◽  
Daniel Remondini ◽  
...  

AbstractIn this paper we compared taxonomic results obtained by metataxonomics (16S rRNA gene sequencing) and metagenomics (whole shotgun metagenomic sequencing) to investigate their reliability for bacteria profiling, studying the chicken gut as a model system. The experimental conditions included two compartments of gastrointestinal tracts and two sampling times. We compared the relative abundance distributions obtained with the two sequencing strategies and then tested their capability to distinguish the experimental conditions. The results showed that 16S rRNA gene sequencing detects only part of the gut microbiota community revealed by shotgun sequencing. Specifically, when a sufficient number of reads is available, Shotgun sequencing has more power to identify less abundant taxa than 16S sequencing. Finally, we showed that the less abundant genera detected only by shotgun sequencing are biologically meaningful, being able to discriminate between the experimental conditions as much as the more abundant genera detected by both sequencing strategies.


2021 ◽  
Author(s):  
Pei-Qin Cao ◽  
Xiu-Ping Li ◽  
Jian Ou-Yang ◽  
Rong-Gang Jiang ◽  
Fang-Fang Huang ◽  
...  

We evaluated the effects of yellow tea extract on relieving constipation induced by loperamide and evaluated the changes of gut microbiota based on 16S rRNA gene sequencing.


Author(s):  
Hongcheng Wei ◽  
Siting Deng ◽  
Yufeng Qin ◽  
Xu Yang ◽  
Ting Chen ◽  
...  

The gut microbiota alternations are associated with gestational anemia (GA); however, limited predictive value for the subsequent incidence of anemia in normal gestational women has been obtained. We sought to rigorously characterise gut dysbiosis in subjects with GA and explored the potential predictive value of novel microbial signatures for the risk of developing GA. A prospective cohort of subjects with GA (n = 156) and healthy control (n = 402), all of whom were free of GA in the second trimester, by 16S rRNA gene sequencing was conducted. Microbial signatures altered dramatically in GA compared with healthy control in the second trimester. Megamonas, Veillonella, and Haemophilus were confirmed to show differential abundances in GA after adjusting for covariates. On the contrary, Lachnospiraceae and Blautia were enriched in control. Microbial co-abundance group (CAG) network was constructed. Prospectively, CAG network relatively accurately predicted upcoming GA in normal pregnant women with an AUC of 0.7738 (95%CI: 0.7171, 0.8306) and the performance was further validated in Validation set (0.8223, 95%CI: 0.7573, 0.8874). Overall, our study demonstrated that alterations in the gut microbial community were associated with anemia in pregnancy and microbial signatures could accurately predict the subsequent incidence of anemia in normal pregnant women. Our findings provided new insights into understanding the role of gut microbiota in GA, identifying high-risk individuals, and modulating gut microbiota as a therapeutic target, thus improving quality of life and well-being of women and children.


Author(s):  
Shiju Xiao ◽  
Guangzhong Zhang ◽  
Chunyan Jiang ◽  
Xin Liu ◽  
Xiaoxu Wang ◽  
...  

BackgroundIncreasing evidence has shown that alterations in the intestinal microbiota play an important role in the pathogenesis of psoriasis. The existing relevant studies focus on 16S rRNA gene sequencing, but in-depth research on gene functions and comprehensive identification of microbiota is lacking.ObjectivesTo comprehensively identify characteristic gut microbial compositions, genetic functions and relative metabolites of patients with psoriasis and to reveal the potential pathogenesis of psoriasis.MethodsDNA was extracted from the faecal microbiota of 30 psoriatic patients and 15 healthy subjects, and metagenomics sequencing and bioinformatic analyses were performed. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database, cluster of orthologous groups (COG) annotations, and metabolic analyses were used to indicate relative target genes and pathways to reveal the pathogenesis of psoriasis.ResultsCompared with healthy individuals, the gut microbiota of psoriasis patients displayed an alteration in microbial taxa distribution, but no significant difference in microbial diversity. A distinct gut microbial composition in patients with psoriasis was observed, with an increased abundance of the phyla Firmicutes, Actinobacteria and Verrucomicrobia and genera Faecalibacterium, Bacteroides, Bifidobacterium, Megamonas and Roseburia and a decreased abundance of the phyla Bacteroidetes, Euryarchaeota and Proteobacteria and genera Prevotella, Alistipes, and Eubacterium. A total of 134 COGs were predicted with functional analysis, and 15 KEGG pathways, including lipopolysaccharide (LPS) biosynthesis, WNT signaling, apoptosis, bacterial secretion system, and phosphotransferase system, were significantly enriched in psoriasis patients. Five metabolites, hydrogen sulfide (H2S), isovalerate, isobutyrate, hyaluronan and hemicellulose, were significantly dysregulated in the psoriatic cohort. The dysbiosis of gut microbiota, enriched pathways and dysregulated metabolites are relevant to immune and inflammatory response, apoptosis, the vascular endothelial growth factor (VEGF) signaling pathway, gut-brain axis and brain-skin axis that play important roles in the pathogenesis of psoriasis.ConclusionsA clear dysbiosis was displayed in the gut microbiota profile, genetic functions and relative metabolites of psoriasis patients. This study is beneficial for further understanding the inflammatory pathogenesis of psoriasis and could be used to develop microbiome-based predictions and therapeutic approaches.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xue Gong ◽  
Cheng Huang ◽  
Xun Yang ◽  
Jianjun Chen ◽  
Juncai Pu ◽  
...  

The microbiota–gut–brain axis has been considered to play an important role in the development of depression, but the underlying mechanism remains unclear. The gastrointestinal tract is home to trillions of microbiota and the colon is considered an important site for the interaction between microbiota and host, but few studies have been conducted to evaluate the alterations in the colon. Accordingly, in this study, we established a chronic social defeated stress (CSDS) mice model of depression. We applied 16S rRNA gene sequencing to assess the gut microbial composition and gas and liquid chromatography–mass spectroscopy to identify fecal metabolites and colonic lipids, respectively. Meanwhile, we used Spearman’s correlation analysis method to evaluate the associations between the gut microbiota, fecal metabolites, colonic lipids, and behavioral index. In total, there were 20 bacterial taxa and 18 bacterial taxa significantly increased and decreased, respectively, in the CSDS mice. Further, microbial functional prediction demonstrated a disturbance of lipid, carbohydrate, and amino acid metabolism in the CSDS mice. We also found 20 differential fecal metabolites and 36 differential colonic lipids (in the category of glycerolipids, glycerophospholipids, and sphingolipids) in the CSDS mice. Moreover, correlation analysis showed that fecal metabolomic signature was associated with the alterations in the gut microbiota composition and colonic lipidomic profile. Of note, three lipids [PC(16:0/20:4), PG(22:6/22:6), and PI(18:0/20:3), all in the category of glycerophospholipids] were significantly associated with anxiety- and depression-like phenotypes in mice. Taken together, our results indicated that the gut microbiota might be involved in the pathogenesis of depression via influencing fecal metabolites and colonic glycerophospholipid metabolism.


2017 ◽  
Author(s):  
Rahul Bodkhe ◽  
Sudarshan A. Shetty ◽  
Dhiraj P. Dhotre ◽  
Anil K. Verma ◽  
Khushbo Bhatia ◽  
...  

AbstractRecent studies on celiac disease (CeD) have shown the role of gut microbiota alterations in CeD pathogenesis. Whether this alteration in the microbial community is the cause or effect of the disease is not well understood, especially in adult onset of disease. The first-degree relatives (FDRs) of CeD patients may provide an opportunity to study gut microbiome in pre-disease state as FDRs are genetically susceptible to CeD. By using 16S rRNA gene sequencing, we observed between the disease condition (CeD), pre-disease (FDR) and control subjects. However, differences were observed at the level of amplicon sequence variant (ASV), suggesting alterations in specific taxa between pre-diseases and diseased condition. Duodenal biopsies showed higher differences in ASVs compared to faecal samples indicating larger disruption of microbiota at disease site. Increased abundance of specific Helicobacter ASVs were observed in duodenum of CeD when compared to FDR (p < 0.01). In case of fecal samples CeD microbiome and Actinomyces. In addition, predicted functional metagenome showed reduced ability of gluten that ecosystem level diversity measures (except in the duodenum) were not significantly different is characterized by reduced abundance of beneficial taxa such as Akkermansia, Ruminococcus degradation by CeD faecal microbiota in comparison to FDRs and controls.


2018 ◽  
Vol 62 (5) ◽  
Author(s):  
N. J. Ajami ◽  
J. L. Cope ◽  
M. C. Wong ◽  
J. F. Petrosino ◽  
L. Chesnel

ABSTRACT Clostridium difficile infection (CDI), a common cause of hospital-acquired infections, typically occurs after disruption of the normal gut microbiome by broad-spectrum antibiotics. Fidaxomicin is a narrow-spectrum antibiotic that demonstrates a reduced impact on the normal gut microbiota and is approved for the treatment of CDI. To further explore the benefits of this property, we used a murine model to examine the effects of fidaxomicin versus vancomycin on gut microbiota and susceptibility to C. difficile colonization while tracking microbiota recovery over time. Mice were exposed to fidaxomicin or vancomycin by oral gavage for 3 days and subsequently challenged with C. difficile spores at predetermined time points up to 21 days postexposure to antibiotics. Fecal samples were subsequently collected for analysis. Twenty-four hours postchallenge, mice were euthanized and the colon contents harvested. The microbiota was characterized using 16S rRNA gene sequencing. All fidaxomicin-exposed mice (except for one at day 8) were resistant to C. difficile colonization. However, 9 of 15 vancomycin-exposed mice were susceptible to C. difficile colonization until day 12. All vancomycin-exposed mice recovered colonization resistance by day 16. Bacterial diversity was similar prior to antibiotic exposure in both arms and decreased substantially after exposure. A shift in taxonomic structure and composition occurred after both exposures; however, the shift was greater in vancomycin-exposed than in fidaxomicin-exposed mice. In summary, compared with vancomycin, fidaxomicin exposure had less impact on microbiota composition, promoted faster microbial recovery, and had less impact on the loss of C. difficile colonization resistance.


Sign in / Sign up

Export Citation Format

Share Document