scholarly journals Male and Female Rats Have Different Physiological Response to High-Fat High-Sucrose Diet but Similar Myocardial Sensitivity to Ischemia-Reperfusion Injury

Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2914
Author(s):  
Natacha Fourny ◽  
Carole Lan ◽  
Monique Bernard ◽  
Martine Desrois

Prediabetes is a strong predictor of type 2 diabetes and its associated cardiovascular complications, but few studies explore sexual dimorphism in this context. Here, we aim to determine whether sex influences physiological response to high-fat high-sucrose diet (HFS) and myocardial tolerance to ischemia-reperfusion injury. Male and female Wistar rats were subjected to standard (CTRL) or HFS diet for 5 months. Then, ex-vivo experiments on isolated perfused heart model were performed to evaluate tolerance to ischemia-reperfusion injury. HFS diet induced fasting hyperglycemia and increased body fat percent to a similar level in both sexes. However, glucose intolerance was more pronounced in female HFS. Cholesterol was increased only in female while male displayed higher level of plasmatic leptin. We observed increased heart weight to tibia length ratio only in males, but we showed a similar decrease in tolerance to ischemia-reperfusion injury in female and male HFS compared with respective controls, characterized by impaired cardiac function, energy metabolism and coronary flow during reperfusion. In conclusion, as soon as glucose intolerance and hyperglycemia develop, we observe higher sensitivity of hearts to ischemia-reperfusion injury without difference between males and females.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eunhee Chung ◽  
Kassandra Gonzalez ◽  
Sarah L. Ullevig ◽  
John Zhang ◽  
Masataka Umeda

AbstractCardiovascular disease is the leading cause of death in women during pregnancy and the postpartum period. Obesity is an independent risk factor for cardiovascular diseases. Nearly 60% of women of reproductive age are considered overweight or obese, cardiovascular disease morbidity and mortality continue to be pervasive. The objective of this study was to determine the effects of an obesogenic diet on the cardiometabolic health of dams during pregnancy and postpartum. Female mice were fed either a high-fat, high-sucrose diet (HFHS) or a refined control diet (CON) for 8 weeks before initiation of pregnancy and throughout the study period. Mice in the HFHS showed two distinct phenotypes, obesity-prone (HFHS/OP) and obesity resistance (HFHS/OR). Pre-pregnancy obesity (HFHS/OP) induced glucose intolerance before pregnancy and during postpartum. Systolic function indicated by the percent fractional shortening (%FS) was significantly decreased in the HFHS/OP at late pregnancy (vs. HFHS/OR) and weaning (vs. CON), but no differences were found at 6 weeks of postpartum among groups. No induction of pathological cardiac hypertrophy markers was found during postpartum. Plasma adiponectin was decreased while total cholesterol was increased in the HFHS/OP. Our results suggested that obesity, not the diet alone, negatively affected cardiac adaptation during pregnancy and postpartum.


Sign in / Sign up

Export Citation Format

Share Document