scholarly journals Antiglycoxidative Properties of Extracts and Fractions from Reynoutria Rhizomes

Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 4066
Author(s):  
Arleta Dołowacka-Jóźwiak ◽  
Adam Matkowski ◽  
Izabela Nawrot-Hadzik

Hyperglycemia, when sustained over a long time in diabetes mellitus (DM), leads to biochemical and cellular abnormalities, primarily through the formation of advanced glycation end-products (AGEs). In the treatment of diabetes, beside blood-sugar-lowering medications, a consumption of herbal products that can inhibit the AGEs’ formation is recommended. This study investigated the in vitro antiglycoxidative potential of extracts and fractions from the rhizomes of Japanese, Giant, and Bohemian knotweeds (Reynoutria japonica (Houtt.), R. sachalinensis (F. Schmidt) Nakai, and R.× bohemica Chrtek et Chrtkova). Their effects on glycooxidation of bovine and human serum albumin were evaluated by incubation of the proteins with a mixture of glucose and fructose (0.5 M) and 150 µg/mL of extract for 28 days at 37 °C, followed by measuring early and late glycation products, albumin oxidation (carbonyl and free thiol groups), and amyloid-β aggregation (thioflavin T and Congo red assays). The highest antiglycoxidative activity, comparable or stronger than the reference drug (aminoguanidine), was observed for ethyl acetate and diethyl ether fractions, enriched in polyphenols (stilbenes, phenylpropanoid disaccharide esters, and free and oligomeric flavan-3-ols). In conclusion, the antiglycoxidative compounds from these three species should be further studied for potential use in the prevention and complementary treatment of DM.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Myeong A Choi ◽  
Sun You Park ◽  
Hye Yun Chae ◽  
Yoojin Song ◽  
Chiranjeev Sharma ◽  
...  

Abstract To develop novel CNS penetrant HDAC inhibitors, a new series of HDAC inhibitors having benzoheterocycle were designed, synthesized, and biologically evaluated. Among the synthesized compounds, benzothiazole derivative 9b exhibited a remarkable anti-proliferative activity (GI50 = 2.01 μM) against SH-SY5Y cancer cell line in a dose and time-dependent manner, better than the reference drug SAHA (GI50 = 2.90 μM). Moreover, compound 9b effectively promoted the accumulation of acetylated Histone H3 and α-tubulin through inhibition of HDAC1 and HDAC6 enzymes, respectively. HDAC enzyme assay also confirmed that compound 9b efficiently inhibited HDAC1 and HDAC6 isoforms with IC50 values of 84.9 nM and 95.9 nM. Furthermore, compound 9b inhibited colony formation capacity of SH-SY5Y cells, which is considered a hallmark of cell carcinogenesis and metastatic potential. The theoretical prediction, in vitro PAMPA-BBB assay, and in vivo brain pharmacokinetic studies confirmed that compound 9b had much higher BBB permeability than SAHA. In silico docking study demonstrated that compound 9b fitted in the substrate binding pocket of HDAC1 and HDAC6. Taken together, compound 9b provided a novel scaffold for developing CNS penetrant HDAC inhibitors and therapeutic potential for CNS-related diseases.


2011 ◽  
Vol 53 (3) ◽  
pp. 129-132 ◽  
Author(s):  
Joshua Muli Mutiso ◽  
John Chege Macharia ◽  
Mustafa Barasa ◽  
Evans Taracha ◽  
Alain J. Bourdichon ◽  
...  

The in vitro and in vivo activity of diminazene (Dim), artesunate (Art) and combination of Dim and Art (Dim-Art) against Leishmania donovani was compared to reference drug; amphotericin B. IC50 of Dim-Art was found to be 2.28 ± 0.24 µg/mL while those of Dim and Art were 9.16 ± 0.3 µg/mL and 4.64 ± 0.48 µg/mL respectively. The IC50 for Amphot B was 0.16 ± 0.32 µg/mL against stationary-phase promastigotes. In vivo evaluation in the L. donovani BALB/c mice model indicated that treatments with the combined drug therapy at doses of 12.5 mg/kg for 28 consecutive days significantly (p < 0.001) reduced parasite burden in the spleen as compared to the single drug treatments given at the same dosages. Although parasite burden was slightly lower (p < 0.05) in the Amphot B group than in the Dim-Art treatment group, the present study demonstrates the positive advantage and the potential use of the combined therapy of Dim-Art over the constituent drugs, Dim or Art when used alone. Further evaluation is recommended to determine the most efficacious combination ratio of the two compounds.


2021 ◽  
Author(s):  
Perçin Karakol ◽  
Emin Kapi

Free radicals are chemicals that play a role in the etiopathogenesis of ischemia–reperfusion injury. To prevent or reduce this damage, many protective or therapeutic antioxidants are used effectively in alternative medicine. These antioxidants include immunological or pharmacological agents, vitamins, food and herbal products, and spices. Herbs and spices have been used for a long time as coloring or preservative agents by adding to the content of foods, and at the same time to increase the nutritional value of foods. More recently, the nutritional effects of herbs and spices have become more perceived and the area of ​​interest for these products has increased. Concordantly, the biological contents of herbs and spices have begun to be studied in more detailed way at the cellular and molecular level. Sample plants are classified according to different chemical families, with the diet. Therefore, they have different levels of antioxidant capacity. These products also have potent anti-inflammatory, antihypertensive, glucoregulatory, antithrombotic, anticarcinogenic and so forth effects. These properties are used in the treatment of some chronic diseases. In this review, the antioxidant properties of various herbs and spices used to add flavor to foods or to extend their shelf life have been examined in the light of large-scale nutritional epidemiological studies, in vitro cellular/animal studies and clinical trials.


2007 ◽  
Vol 2 (1) ◽  
pp. 1934578X0700200 ◽  
Author(s):  
Claudio M. Lezama-Dávila ◽  
Abhay R. Satoskar ◽  
Mirna Úc-Encalada ◽  
Ricardo Isaac-Márquez ◽  
Angélica P. Isaac-Márquez

In this work we studied the in vitro toxicity of artemisinin and its chemical derivatives deoxoartemisinin, artemether and arteether against stationary phase promastigotes of Leishmania (L) mexicana. Results presented in this work include dramatic changes in parasite morphology when they were cultured in the presence of these chemicals. These changes were accompanied by the parasite's lost of mobility and eventual death after four days of culturing. We also observed that parasite growth was much more effectively reduced in cultures carried out in the presence of either artemisinin or its semi-synthetic derivatives than the reference drug N-methyl meglumine (Glucantime™, Rhone Poulenc, France). The compounds tested in this work were not toxic to Hela cells cultured in vitro. This is the first report describing the promising potential use of Qinghaosu (artemisinin) and related chemical analogues to treat L (L) mexicana infections.


2020 ◽  
Vol 96 (1139) ◽  
pp. 550-555 ◽  
Author(s):  
Neeraj Sinha ◽  
Galit Balayla

Hydroxychloroquine and chloroquine are medications that have been used for a long time. Their most common use is for the treatment and prophylaxis of malaria. However, these antimalarial drugs are known to also have anti-inflammatory and antiviral effects and are used for several chronic diseases such as systemic lupus erythematosus with low adverse effects. The antiviral action of hydroxychloroquine and chloroquine has been a point of interest to different researchers due to its mechanism of action. Several in vitro studies have proven their effectiveness on severe acute respiratory syndrome virus and currently both in vitro and in vivo studies have been conducted on 2019 novel coronavirus (covid-19). The purpose of this article is to review the history and mechanism of actions of these drugs and the potential use they can have on the current covid-19 pandemic.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2854 ◽  
Author(s):  
Fred Kwame Ofosu ◽  
Fazle Elahi ◽  
Eric Banan-Mwine Daliri ◽  
Su-Jung Yeon ◽  
Hun Ju Ham ◽  
...  

Eight new genotypes of brown sorghum grain were decorticated and assessed for their antioxidant, antidiabetic and antiobesity activities in vitro. The DPPH and ABTS radical scavenging assays of the soluble fractions were evaluated, followed by digestive enzymes and advanced glycation end-products (AGEs) formation inhibition assays. DSOR 33 and DSOR 11 exhibited the highest DPPH (IC50 = 236.0 ± 1.98 µg/mL and 292.05 ± 2.19 µg/mL, respectively) and ABTS radical scavenging activity (IC50 = 302.50 ± 1.84 µg/mL and 317.05 ± 1.06 µg/mL, respectively). DSOR 17, DSOR 11 and DSOR 33 showed significantly higher inhibitory activity of both α-glucosidase and α-amylase (IC50 = 31.86, 35.10 and 49.40 µg/mL; and 15.87, 22.79 and 37.66 µg/mL, respectively) compared to acarbose (IC50 = 59.34 and 27.73 µg/mL, respectively). Similarly, DSOR 33, DSOR 11 and DSOR 17 showed potent inhibition of both AGEs and lipase with IC50 values of 18.25, 19.03 and 38.70 µg/mL; and 5.01, 5.09 and 4.94 µg/mL, respectively, compared to aminoguanidine (52.30 µg/mL) and orlistat (5.82 µg/mL). Flavonoids were the predominant compounds identified, with flavones being the major subclass in these three extracts. Our findings suggest that decorticated sorghum grains contain substantial amounts of flavonoids and could be promising candidates for the prevention and treatment of diabetes and obesity.


Planta Medica ◽  
2013 ◽  
Vol 79 (13) ◽  
Author(s):  
MJ Groot ◽  
MG Pikkemaat ◽  
WD Driessen van Lankveld
Keyword(s):  

1997 ◽  
Vol 36 (02) ◽  
pp. 71-75 ◽  
Author(s):  
S. Glatz ◽  
S. N. Reske ◽  
K. G. Grillenberger

Summary Aim: One therapeutic approach to rheumatoid arthritis and other inflammatory arthropathies besides surgical removal of inflamed synovium is radiation synovectomy using beta-emitting radionuclides to destroy the affected synovial tissue. Up to now the major problem associated with the use of labeled particles or colloids has been considerable leakage of radionuclides from the injected joint coupled with high radiation doses to liver and other non target organs. In this study we compared 188Re labeled hydroxyapatite particles and 188Re rhenium sulfur colloid for their potential use in radiation synovectomy. Methods: To this end we varied the labeling conditions (concentrations, pH-value, heating procedure) and analyzed the labeling yield, radiochemical purity, and in vitro stability of the resulting radiopharmaceutical. Results: After optimizing labeling conditions we achieved a labeling yield of more than 80% for 188Re hydroxyapatite and more than 90% for the rhenium sulfur colloid. Both of the radiopharmaceuticals can be prepared under aseptic conditions using an autoclav for heating without loss of activity. In vitro stability studies using various challenge solutions (water, normal saline, diluted synovial fluid) showed that 188Re labeled hydroxyapatite particles lost about 80% of their activity within 5 d in synovial fluid. Rhenium sulfur colloid on the other hand proved to be very stable with a remaining activity of more than 93% after 5 d in diluted synovial fluid. Conclusion: These in vitro results suggest that 188Re labeled rhenium sulfur colloid expects to be more suitable for therapeutic use in radiation synovectomy than the labeled hydroxyapatite particles.


Sign in / Sign up

Export Citation Format

Share Document