scholarly journals Cranberry (Vaccinium macrocarpon) Extract Impairs Nairovirus Infection by Inhibiting the Attachment to Target Cells

Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1025
Author(s):  
Mattia Mirandola ◽  
Maria Vittoria Salvati ◽  
Carola Rodigari ◽  
K. Sofia Appelberg ◽  
Ali Mirazimi ◽  
...  

Hazara virus (HAZV) belongs to the Nairoviridae family and is included in the same serogroup of the Crimean-Congo hemorrhagic fever virus (CCHFV). CCHFV is the most widespread tick-borne arbovirus. It is responsible for a serious hemorrhagic disease, for which specific and effective treatment and preventive systems are missing. Bioactive compounds derived from several natural products may provide a natural source of broad-spectrum antiviral agents, characterized by good tolerability and minimal side effects. Previous in vitro studies have shown that a cranberry (Vaccinium macrocarpon Ait.) extract containing a high content of A-type proanthocyanidins (PAC-A) inhibits the replication of herpes simplex and influenza viruses by hampering their attachment to target cells. Given the broad-spectrum antimicrobial activity of polyphenols and the urgency to develop therapies for the treatment of CCHF, we investigated the antiviral activity of cranberry extract against HAZV, a surrogate nairovirus model of CCHFV that can be handled in Level 2 Biosafety Laboratories (BSL-2). The results indicate that the cranberry extract exerts an antiviral activity against HAZV by targeting early stages of the viral replication cycle, including the initial adsorption to target cells. Although the details of the molecular mechanism of action remain to be clarified, the cranberry extract exerts a virucidal effect through a direct interaction with HAZV particles that leads to the subsequent impairment of virus attachment to cell-surface receptors. Finally, the antiviral activity of the cranberry extract was also confirmed for CCHFV. As a whole, the evidence obtained suggests that cranberry extract is a valuable candidate to be considered for the development of therapeutic strategies for CCHFV infections.

2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Jeong-Joong Yoon ◽  
Mart Toots ◽  
Sujin Lee ◽  
Myung-Eun Lee ◽  
Barbara Ludeke ◽  
...  

ABSTRACT Morbidity and mortality resulting from influenza-like disease are a threat, especially for older adults. To improve case management, next-generation broad-spectrum antiviral therapeutics that are efficacious against major drivers of influenza-like disease, including influenza viruses and respiratory syncytial virus (RSV), are urgently needed. Using a dual-pathogen high-throughput screening protocol for influenza A virus (IAV) and RSV inhibitors, we have identified N4-hydroxycytidine (NHC) as a potent inhibitor of RSV, influenza B viruses, and IAVs of human, avian, and swine origins. Biochemical in vitro polymerase assays and viral RNA sequencing revealed that the ribonucleotide analog is incorporated into nascent viral RNAs in place of cytidine, increasing the frequency of viral mutagenesis. Viral passaging in cell culture in the presence of an inhibitor did not induce robust resistance. Pharmacokinetic profiling demonstrated dose-dependent oral bioavailability of 36 to 56%, sustained levels of the active 5′-triphosphate anabolite in primary human airway cells and mouse lung tissue, and good tolerability after extended dosing at 800 mg/kg of body weight/day. The compound was orally efficacious against RSV and both seasonal and highly pathogenic avian IAVs in mouse models, reducing lung virus loads and alleviating disease biomarkers. Oral dosing reduced IAV burdens in a guinea pig transmission model and suppressed virus spread to uninfected contact animals through direct transmission. Based on its broad-spectrum efficacy and pharmacokinetic properties, NHC is a promising candidate for future clinical development as a treatment option for influenza-like diseases.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 650
Author(s):  
Gunsup Lee ◽  
Shailesh Budhathoki ◽  
Geum-Young Lee ◽  
Kwang-ji Oh ◽  
Yeon Kyoung Ham ◽  
...  

The virus behind the current pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the etiology of novel coronavirus disease (COVID-19) and poses a critical public health threat worldwide. Effective therapeutics and vaccines against multiple coronaviruses remain unavailable. Single-chain variable fragment (scFv), a recombinant antibody, exhibits broad-spectrum antiviral activity against DNA and RNA viruses owing to its nucleic acid-hydrolyzing property. The antiviral activity of 3D8 scFv against SARS-CoV-2 and other coronaviruses was evaluated in Vero E6 cell cultures. Viral growth was quantified with quantitative RT-qPCR and plaque assay. The nucleic acid-hydrolyzing activity of 3D8 was assessed through abzyme assays of in vitro viral transcripts and cell viability was determined by MTT assay. We found that 3D8 inhibited the replication of SARS-CoV-2, human coronavirus OC43 (HCoV-OC43), and porcine epidemic diarrhea virus (PEDV). Our results revealed the prophylactic and therapeutic effects of 3D8 scFv against SARS-CoV-2 in Vero E6 cells. Immunoblot and plaque assays showed the reduction of coronavirus nucleoproteins and infectious particles, respectively, in 3D8 scFv-treated cells. These data demonstrate the broad-spectrum antiviral activity of 3D8 against SARS-CoV-2 and other coronaviruses. Thus, it could be considered a potential antiviral countermeasure against SARS-CoV-2 and zoonotic coronaviruses.


2021 ◽  
Author(s):  
Jessie Pannu ◽  
Susan Ciotti ◽  
Shyamala Ganesan ◽  
George Arida ◽  
Chad Costley ◽  
...  

Abstract Objective: The Covid-19 pandemic has highlighted the importance of aerosolized droplets inhaled into the nose in the transmission of respiratory viral disease. Inactivating pathogenic viruses at the nasal port of entry may reduce viral loads, thereby reducing infection, transmission and spread. In this communication, we demonstrate safe and broad anti-viral activity of oil-in-water nanoemulsion (nanodroplet) formulation containing the potent antiseptic 0.13% Benzalkonium Chloride (NE-BZK). Results: We have demonstrated that NE-BZK exhibits broad-spectrum, long-lasting antiviral activity with >99.9% in vitro killing of enveloped viruses including SARS-CoV-2, human coronavirus, RSV, and influenza B. In vitro and ex-vivo studies demonstrated continued killing of >99.99% of human coronavirus with diluted NE-BZK and persistent for 8 hours post application, respectively. The repeated application of NE-BZK, twice daily for 2 weeks into rabbit nostrils demonstrated its safety with no nasal irritation. These findings demonstrate that formulating BZK into the proprietary nanodroplets offers a safe and effective antiviral and a significant addition to strategies to combat the spread of respiratory viral infectious diseases.


2019 ◽  
Vol 20 (24) ◽  
pp. 6261
Author(s):  
Min Guo ◽  
Jiawei Ni ◽  
Jie Yu ◽  
Jing Jin ◽  
Lingman Ma ◽  
...  

The currently available drugs against influenza A virus primarily target neuraminidase (NA) or the matrix protein 2 (M2) ion channel. The emergence of drug-resistant viruses requires the development of new antiviral chemicals. Our study applied a cell-based approach to evaluate the antiviral activity of a series of newly synthesized benzoic acid derivatives, and 4-(2,2-Bis(hydroxymethyl)-5-oxopyrrolidin-l-yl)-3-(5-cyclohexyl-4H-1,2,4-triazol-3-yl)amino). benzoic acid, termed NC-5, was found to possess antiviral activity. NC-5 inhibited influenza A viruses A/FM/1/47 (H1N1), A/Beijing/32/92 (H3N2) and oseltamivir-resistant mutant A/FM/1/47-H275Y (H1N1-H275Y) in a dose-dependent manner. The 50% effective concentrations (EC50) for H1N1 and H1N1-H275Y were 33.6 μM and 32.8 μM, respectively, which showed that NC-5 had a great advantage over oseltamivir in drug-resistant virus infections. The 50% cytotoxic concentration (CC50) of NC-5 was greater than 640 μM. Orally administered NC-5 protected mice infected with H1N1 and H1N1-H275Y, conferring 80% and 60% survival at 100 mg/kg/d, reducing body weight loss, and alleviating virus-induced lung injury. NC-5 could suppress NP and M1 protein expression levels during the late stages of viral biosynthesis and inhibit NA activity, which may influence virus release. Our study proved that NC-5 has potent anti-influenza activity in vivo and in vitro, meaning that it could be regarded as a promising drug candidate to treat infection with influenza viruses, including oseltamivir-resistant viruses.


2020 ◽  
Vol 94 (7) ◽  
Author(s):  
Jun-Gyu Park ◽  
Ginés Ávila-Pérez ◽  
Aitor Nogales ◽  
Pilar Blanco-Lobo ◽  
Juan C. de la Torre ◽  
...  

ABSTRACT Influenza A (IAV) and influenza B (IBV) viruses are highly contagious pathogens that cause fatal respiratory disease every year, with high economic impact. In addition, IAV can cause pandemic infections with great consequences when new viruses are introduced into humans. In this study, we evaluated 10 previously described compounds with antiviral activity against mammarenaviruses for their ability to inhibit IAV infection using our recently described bireporter influenza A/Puerto Rico/8/34 (PR8) H1N1 (BIRFLU). Among the 10 tested compounds, eight (antimycin A [AmA], brequinar [BRQ], 6-azauridine, azaribine, pyrazofurin [PF], AVN-944, mycophenolate mofetil [MMF], and mycophenolic acid [MPA]), but not obatoclax or Osu-03012, showed potent anti-influenza virus activity under posttreatment conditions [median 50% effective concentration (EC50) = 3.80 nM to 1.73 μM; selective index SI for 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, >28.90 to 13,157.89]. AmA, 6-azauridine, azaribine, and PF also showed potent inhibitory effect in pretreatment (EC50 = 0.14 μM to 0.55 μM; SI-MTT = 70.12 to >357.14) or cotreatment (EC50 = 34.69 nM to 7.52 μM; SI-MTT = 5.24 to > 1,441.33) settings. All of the compounds tested inhibited viral genome replication and gene transcription, and none of them affected host cellular RNA polymerase II activities. The antiviral activity of the eight identified compounds against BIRFLU was further confirmed with seasonal IAVs (A/California/04/2009 H1N1 and A/Wyoming/3/2003 H3N2) and an IBV (B/Brisbane/60/2008, Victoria lineage), demonstrating their broad-spectrum prophylactic and therapeutic activity against currently circulating influenza viruses in humans. Together, our results identified a new set of antiviral compounds for the potential treatment of influenza viral infections. IMPORTANCE Influenza viruses are highly contagious pathogens and are a major threat to human health. Vaccination remains the most effective tool to protect humans against influenza infection. However, vaccination does not always guarantee complete protection against drifted or, more noticeably, shifted influenza viruses. Although U.S. Food and Drug Administration (FDA) drugs are approved for the treatment of influenza infections, influenza viruses resistant to current FDA antivirals have been reported and continue to emerge. Therefore, there is an urgent need to find novel antivirals for the treatment of influenza viral infections in humans, a search that could be expedited by repurposing currently approved drugs. In this study, we assessed the influenza antiviral activity of 10 compounds previously shown to inhibit mammarenavirus infection. Among them, eight drugs showed antiviral activities, providing a new battery of drugs that could be used for the treatment of influenza infections.


Author(s):  
Luděk Eyer ◽  
Pavel Svoboda ◽  
Jan Balvan ◽  
Tomáš Vičar ◽  
Matina Raudenská ◽  
...  

Emerging flaviviruses are causative agents of severe and life-threatening diseases, against which no approved therapies are available. Among the nucleoside analogues, which represent a promising group of potentially therapeutic compounds, fluorine-substituted nucleosides are characterized by unique structural and functional properties. Despite having been first synthesized almost 5 decades ago, they still offer new therapeutic opportunities as inhibitors of essential viral or cellular enzymes active in nucleic acid replication/transcription or nucleoside/nucleotide metabolism. Here we report evaluation of the anti-flaviviral activity of 28 nucleoside analogues, each modified with a fluoro substituent at different positions of the ribose ring and/or heterocyclic nucleobase. Our antiviral screening revealed that 3′-deoxy-3′-fluoroadenosine exerted a low-micromolar antiviral effect against tick-borne encephalitis virus (TBEV), Zika virus, and West Nile (WNV) virus (EC50 values from 1.1 ± 0.1 μM to 4.7 ± 1.5 μM), which was manifested in host cell lines of neural and extraneural origin. The compound did not display any measurable cytotoxicity up to concentrations of 25 μM but had an observable cytostatic effect, resulting in suppression of cell proliferation at concentrations of >12.5 μM. Novel approaches based on quantitative phase imaging using holographic microscopy were developed for advanced characterization of antiviral and cytotoxic profiles of 3′-deoxy-3′-fluoroadenosine in vitro. In addition to its antiviral activity in cell cultures, 3′-deoxy-3′-fluoroadenosine was active in vivo in mouse models of TBEV and WNV infection. Our results demonstrate that fluoro-modified nucleosides represent a group of bioactive molecules with excellent potential to serve as prospective broad-spectrum antivirals in antiviral research and drug development.


PLoS ONE ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. e0116816 ◽  
Author(s):  
Licia Bordi ◽  
Eleonora Lalle ◽  
Claudia Caglioti ◽  
Damiano Travaglini ◽  
Daniele Lapa ◽  
...  

2008 ◽  
Vol 52 (8) ◽  
pp. 2727-2733 ◽  
Author(s):  
David I. Bernstein ◽  
Nathalie Goyette ◽  
Rhonda Cardin ◽  
Earl R. Kern ◽  
Guy Boivin ◽  
...  

ABSTRACT Phosphorothioated oligonucleotides have a sequence-independent antiviral activity as amphipathic polymers (APs). The activity of these agents against herpesvirus infections in vitro and in vivo was investigated. The previously established sequence-independent, phosphorothioation-dependent antiviral activity of APs was confirmed in vitro by showing that a variety of equivalently sized homo- and heteropolymeric AP sequences were similarly active against herpes simplex virus type 1 (HSV-1) infection in vitro compared to the 40mer degenerate parent compound (REP 9), while the absence of phosphorothioation resulted in the loss of antiviral activity. In addition, REP 9 demonstrated in vitro activity against a broad spectrum of other herpesviruses: HSV-2 (50% effective concentration [EC50], 0.02 to 0.06 μM), human cytomegalovirus (EC50, 0.02 to 0.13 μM), varicella zoster virus (EC50, <0.02 μM), Epstein-Barr virus (EC50, 14.7 μM) and human herpesvirus types 6A/B (EC50, 2.9 to 10.2 μM). The murine microbicide model of genital HSV-2 was then used to evaluate in vivo activity. REP 9 (275 mg/ml) protected 75% of animals from disease and infection when provided 5 or 30 min prior to vaginal challenge. When an acid-stable analog (REP 9C) was used, 75% of mice were protected when treated with 240 mg/ml 5 min prior to infection (P < 0.001), while a lower dose (100 mg/ml) protected 100% of the mice (P < 0.001). The acid stable REP 9C formulation also provided protection at 30 min (83%, P < 0.001) and 60 min (50%, P = 0.07) against disease. These observations suggest that APs may have microbicidal activity and potential as broad-spectrum antiherpetic agents and represent a novel class of agents that should be studied further.


2007 ◽  
Vol 18 (5) ◽  
pp. 259-275 ◽  
Author(s):  
Robert W Buckheit ◽  
Tracy L Hartman ◽  
Karen M Watson ◽  
Ho Seok Kwon ◽  
Sun Hwan Lee ◽  
...  

Since the discovery of the 2,4 (1 H,3 H)-pyrimidinediones as potent non-nucleoside inhibitors of the HIV-1 reverse transcriptase (RT) this class of compounds has yielded a number of N-1 acyclic substituted pyrimidinediones with substantial antiviral activity, which is highly dependent upon their molecular fit into the binding pocket common to this inhibitory class. We have specifically examined the structure activity relationships of compounds with chemical modification made by substituting homocyclic rather than acyclic moieties at N-1 of the pyrimidinedione. Seventy-four compounds were synthesized and evaluated for antiviral activity against HIV-1 and HIV-2. The homocyclic modifications resulted in compounds with significant activity against both HIV-1 and HIV-2, suggesting these compounds represent a new class of non-nucleoside RT inhibitors. The structure-activity relationship (SAR) evaluations indicated that cyclopropyl, phenyl and 1- or 3-cyclopenten-1-yl substitutions at the N-1 of the pyrimidinedione, the addition of a methyl linker between the cyclic moiety and the N-1 and the addition of a benzoyl group at the C-6 of the pyrimidinedione had the greatest contribution to antiviral activity. Five pyrimidinedione analogues with therapeutic indexes (TIs)>450,000 and a specific analogue (1-cyclopropylmethyl-5-isopropyl-6-(3,5-dimethylbenzoyl)-2,4(1 H,3 H)-pyrimidinedione), which exhibited a TI of >2,000,000, were identified. None of the analogues were cytotoxic to target cells at the highest in vitro test concentration, which is the upper limit of compound solubility of the analogues in aqueous solution. Thus, we have identified a series of pyrimidinediones with substantially improved antiviral efficacy and range of action and with significantly reduced cellular cytotoxicity.


Sign in / Sign up

Export Citation Format

Share Document