scholarly journals Multi-Step Ubiquitin Decoding Mechanism for Proteasomal Degradation

2020 ◽  
Vol 13 (6) ◽  
pp. 128
Author(s):  
Hikaru Tsuchiya ◽  
Akinori Endo ◽  
Yasushi Saeki

The 26S proteasome is a 2.5-MDa protease complex responsible for the selective and ATP-dependent degradation of ubiquitylated proteins in eukaryotic cells. Proteasome-mediated protein degradation accounts for ~70% of all cellular proteolysis under basal conditions, and thereby any dysfunction can lead to drastic changes in cell homeostasis. A major function of ubiquitylation is to target proteins for proteasomal degradation. Accompanied by deciphering the structural diversity of ubiquitin chains with eight linkages and chain lengths, the ubiquitin code for proteasomal degradation has been expanding beyond the best-characterized Lys48-linked ubiquitin chains. Whereas polyubiquitylated proteins can be directly recognized by the proteasome, in several cases, these proteins need to be extracted or segregated by the conserved ATPases associated with diverse cellular activities (AAA)-family ATPase p97/valosin-containing protein (VCP) complex and escorted to the proteasome by ubiquitin-like (UBL)–ubiquitin associated (UBA) proteins; these are called substrate-shuttling factors. Furthermore, proteasomes are highly mobile and are appropriately spatiotemporally regulated in response to different cellular environments and stresses. In this review, we highlight an emerging key link between p97, shuttling factors, and proteasome for efficient proteasomal degradation. We also present evidence that proteasome-containing nuclear foci form by liquid–liquid phase separation under acute hyperosmotic stress.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Bin Wang ◽  
Lei Zhang ◽  
Tong Dai ◽  
Ziran Qin ◽  
Huasong Lu ◽  
...  

AbstractEmerging evidence suggests that liquid–liquid phase separation (LLPS) represents a vital and ubiquitous phenomenon underlying the formation of membraneless organelles in eukaryotic cells (also known as biomolecular condensates or droplets). Recent studies have revealed evidences that indicate that LLPS plays a vital role in human health and diseases. In this review, we describe our current understanding of LLPS and summarize its physiological functions. We further describe the role of LLPS in the development of human diseases. Additionally, we review the recently developed methods for studying LLPS. Although LLPS research is in its infancy—but is fast-growing—it is clear that LLPS plays an essential role in the development of pathophysiological conditions. This highlights the need for an overview of the recent advances in the field to translate our current knowledge regarding LLPS into therapeutic discoveries.


Author(s):  
A-M Ladouceur ◽  
B Parmar ◽  
S Biedzinski ◽  
J Wall ◽  
SG Tope ◽  
...  

AbstractOnce described as mere “bags of enzymes”, bacterial cells are in fact highly organized, with many macromolecules exhibiting non-uniform localization patterns. Yet the physical and biochemical mechanisms that govern this spatial heterogeneity remain largely unknown. Here, we identify liquid-liquid phase separation (LLPS) as a mechanism for organizing clusters of RNA polymerase (RNAP) in E. coli. Using fluorescence imaging, we show that RNAP quickly transitions from a dispersed to clustered localization pattern as cells enter log phase in nutrient-rich media. RNAP clusters are sensitive to hexanediol, a chemical that dissolves liquid-like compartments in eukaryotic cells. In addition, we find that the transcription antitermination factor NusA forms droplets in vitro and in vivo, suggesting that it may nucleate RNAP clusters. Finally, we use single-molecule tracking to characterize the dynamics of cluster components. Our results indicate that RNAP and NusA molecules move inside clusters, with mobilities faster than a DNA locus but slower than bulk diffusion through the nucleoid. We conclude that RNAP clusters are biomolecular condensates that assemble through LLPS. This work provides direct evidence for LLPS in bacteria and suggests that this process serves as a universal mechanism for intracellular organization across the tree of life.SignificanceBacterial cells are small and were long thought to have little to no internal structure. However, advances in microscopy have revealed that bacteria do indeed contain subcellular compartments. But how these compartments form has remained a mystery. Recent progress in larger, more complex eukaryotic cells has identified a novel mechanism for intracellular organization known as liquid-liquid phase separation. This process causes certain types of molecules to concentrate within distinct compartments inside the cell. Here, we demonstrate that the same process also occurs in bacteria. This work, together with a growing body of literature, suggests that liquid-liquid phase separation is a universal mechanism for intracellular organization that extends across the tree of life.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maxime Uriarte ◽  
Nadine Sen Nkwe ◽  
Roch Tremblay ◽  
Oumaima Ahmed ◽  
Clémence Messmer ◽  
...  

AbstractEukaryotic cells have evolved highly orchestrated protein catabolic machineries responsible for the timely and selective disposal of proteins and organelles, thereby ensuring amino acid recycling. However, how protein degradation is coordinated with amino acid supply and protein synthesis has remained largely elusive. Here we show that the mammalian proteasome undergoes liquid-liquid phase separation in the nucleus upon amino acid deprivation. We termed these proteasome condensates SIPAN (Starvation-Induced Proteasome Assemblies in the Nucleus) and show that these are a common response of mammalian cells to amino acid deprivation. SIPAN undergo fusion events, rapidly exchange proteasome particles with the surrounding milieu and quickly dissolve following amino acid replenishment. We further show that: (i) SIPAN contain K48-conjugated ubiquitin, (ii) proteasome inhibition accelerates SIPAN formation, (iii) deubiquitinase inhibition prevents SIPAN resolution and (iv) RAD23B proteasome shuttling factor is required for SIPAN formation. Finally, SIPAN formation is associated with decreased cell survival and p53-mediated apoptosis, which might contribute to tissue fitness in diverse pathophysiological conditions.


2021 ◽  
Vol 433 (2) ◽  
pp. 166731
Author(s):  
Yanxian Lin ◽  
Yann Fichou ◽  
Andrew P. Longhini ◽  
Luana C. Llanes ◽  
Pengyi Yin ◽  
...  

Author(s):  
Yanting Xing ◽  
Aparna Nandakumar ◽  
Aleksandr Kakinen ◽  
Yunxiang Sun ◽  
Thomas P. Davis ◽  
...  

2021 ◽  
Author(s):  
Kazuki Murakami ◽  
Shinji Kajimoto ◽  
Daiki Shibata ◽  
Kunisato Kuroi ◽  
Fumihiko Fujii ◽  
...  

Liquid–liquid phase separation (LLPS) plays an important role in a variety of biological processes and is also associated with protein aggregation in neurodegenerative diseases. Quantification of LLPS is necessary to...


2021 ◽  
Author(s):  
Dean N. Edun ◽  
Meredith R. Flanagan ◽  
Arnaldo L. Serrano

Two-dimensional infrared spectroscopy reveals folding of an intrinsically disordered peptide when sequestered into a model “membrane-less” organelle.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Liu ◽  
Ying Xie ◽  
Jing Guo ◽  
Xin Li ◽  
Jingjing Wang ◽  
...  

AbstractDevelopment of chemoresistance is the main reason for failure of clinical management of multiple myeloma (MM), but the genetic and epigenetic aberrations that interact to confer such chemoresistance remains unknown. In the present study, we find that high steroid receptor coactivator-3 (SRC-3) expression is correlated with relapse/refractory and poor outcomes in MM patients treated with bortezomib (BTZ)-based regimens. Furthermore, in immortalized cell lines, high SRC-3 enhances resistance to proteasome inhibitor (PI)-induced apoptosis. Overexpressed histone methyltransferase NSD2 in patients bearing a t(4;14) translocation or in BTZ-resistant MM cells coordinates elevated SRC-3 by enhancing its liquid–liquid phase separation to supranormally modify histone H3 lysine 36 dimethylation (H3K36me2) modifications on promoters of anti-apoptotic genes. Targeting SRC-3 or interference of its interactions with NSD2 using a newly developed inhibitor, SI-2, sensitizes BTZ treatment and overcomes drug resistance both in vitro and in vivo. Taken together, our findings elucidate a previously unrecognized orchestration of SRC-3 and NSD2 in acquired drug resistance of MM and suggest that SI-2 may be efficacious for overcoming drug resistance in MM patients.


Sign in / Sign up

Export Citation Format

Share Document