scholarly journals Altered Brain Leptin and Leptin Receptor Expression in the 5XFAD Mouse Model of Alzheimer’s Disease

2020 ◽  
Vol 13 (11) ◽  
pp. 401
Author(s):  
Anishchal A. Pratap ◽  
R. M. Damian Holsinger

Alzheimer’s disease (AD) is a complex neurodegenerative disorder characterized by the accumulation of amyloid plaques and neurofibrillary tangles. Interestingly, individuals with metabolic syndromes share some pathologies with those diagnosed with AD including neuroinflammation, insulin resistance and cognitive deficits. Leptin, an adipocyte-derived hormone, regulates metabolism, energy expenditure and satiety via its receptor, LepR. To investigate the possible involvement of leptin in AD, we examined the distribution of leptin and LepR in the brains of the 5XFAD mouse model of AD, utilizing immunofluorescent staining in young (10–12-weeks; n = 6) and old (48–52-weeks; n = 6) transgenic (Tg) mice, together with age-matched wild-type (WT) controls for both age groups (young-WT, n = 6; old-WT, n = 6). We also used double immunofluorescent staining to examine the distribution of leptin and leptin receptor expression in astrocytes. In young 5XFAD, young-WT and old-WT mice, we observed neuronal and endothelial expression of leptin and LepR throughout the brain. However, neuronal leptin and LepR expression in the old 5XFAD brain was significantly diminished. Reduced neuronal leptin and LepR expression was accompanied by plaque loading and neuroinflammation in the AD brain. A marked increase in astrocytic leptin and LepR was also observed in old 5XFAD mice compared to younger 5XFAD mice. We postulate that astrocytes may utilize LepR signalling to mediate and drive their metabolically active state when degrading amyloid in the AD brain. Overall, these findings provide evidence of impaired leptin and LepR signalling in the AD brain, supporting clinical and epidemiological studies performed in AD patients.

2021 ◽  
pp. 1-12
Author(s):  
Fanglei Han ◽  
Jia Zhao ◽  
Guoqing Zhao

Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disease which shows a set of symptoms involving cognitive changes and psychological changes. Given that AD is the most common form of dementia in aging population and the increasing demand for anesthesia/surgery with aging, there has been significant interest in the exact impact of volatile anesthetics on cognitive function and pathological alterations in AD population. Objective: This study aimed to investigate behavioral changes and neuropathology in the 5xFAD mouse model of Alzheimer’s disease with short-term exposure or long-term exposure to desflurane, sevoflurane, or isoflurane. Methods: In this study, we exposed 5xFAD mouse model of AD to isoflurane, sevoflurane, or desflurane in two different time periods (30 min and 6 h), and the memory related behaviors as well as the pathological changes in 5xFAD mice were evaluated 7 days after the anesthetic exposure. Results: We found that short-term exposure to volatile anesthetics did not affect hippocampus dependent memory and the amyloid-β (Aβ) deposition in the brain. However, long-term exposure to sevoflurane or isoflurane significantly increased the Aβ deposition in CA1 and CA3 regions of hippocampus, as well as the glial cell activation in amygdala. Besides, the PSD-95 expression was decreased in 5xFAD mice with exposure to sevoflurane or isoflurane and the caspase-3 activation was enhanced in isoflurane, sevoflurane, and desflurane groups. Conclusion: Our results demonstrate the time-dependent effects of common volatile anesthetics and implicate that desflurane has the potential benefits to prolonged anesthetic exposure in AD patients.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Martina Svensson ◽  
Emelie Andersson ◽  
Oscar Manouchehrian ◽  
Yiyi Yang ◽  
Tomas Deierborg

AbstractPhysical exercise has been suggested to reduce the risk of developing Alzheimer’s disease (AD) as well as ameliorate the progression of the disease. However, we recently published results from two large epidemiological studies showing no such beneficial effects on the development of AD. In addition, long-term, voluntary running in the 5xFAD mouse model of AD did not affect levels of soluble amyloid beta (Aβ), synaptic proteins or cognitive function. In this follow-up study, we investigate whether running could impact other pathological aspects of the disease, such as insoluble Aβ levels, the neuroinflammatory response and non-cognitive behavioral impairments. We investigated the effects of 24 weeks of voluntary wheel running in female 5xFAD mice (n = 30) starting at 2–3 months of age, before substantial extracellular plaque formation. Running mice developed hindlimb clasping earlier (p = 0.009) compared to sedentary controls. Further, running exacerbated the exploratory behavior in Elevated plus maze (p = 0.001) and anxiety in Open field (p = 0.024) tests. Additionally, microglia, cytokines and insoluble Aβ levels were not affected. Taken together, our findings suggest that voluntary wheel running is not a beneficial intervention to halt disease progression in 5xFAD mice.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yangyang Lin ◽  
Jian Jin ◽  
Rongke Lv ◽  
Yuan Luo ◽  
Weiping Dai ◽  
...  

AbstractAlzheimer’s disease (AD) is a progressive neurodegenerative disease with high prevalence rate among the elderly population. A large number of clinical studies have suggested repetitive transcranial magnetic stimulation (rTMS) as a promising non-invasive treatment for patients with mild to moderate AD. However, the underlying cellular and molecular mechanisms remain largely uninvestigated. In the current study, we examined the effect of high frequency rTMS treatment on the cognitive functions and pathological changes in the brains of 4- to 5-month old 5xFAD mice, an early pathological stage with pronounced amyloidopathy and cognitive deficit. Our results showed that rTMS treatment effectively prevented the decline of long-term memories of the 5xFAD mice for novel objects and locations. Importantly, rTMS treatment significantly increased the drainage efficiency of brain clearance pathways, including the glymphatic system in brain parenchyma and the meningeal lymphatics, in the 5xFAD mouse model. Significant reduction of Aβ deposits, suppression of microglia and astrocyte activation, and prevention of decline of neuronal activity as indicated by the elevated c-FOS expression, were observed in the prefrontal cortex and hippocampus of the rTMS-treated 5xFAD mice. Collectively, these findings provide a novel mechanistic insight of rTMS in regulating brain drainage system and β-amyloid clearance in the 5xFAD mouse model, and suggest the potential use of the clearance rate of contrast tracer in cerebrospinal fluid as a prognostic biomarker for the effectiveness of rTMS treatment in AD patients.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Jens V. Andersen ◽  
Niels H. Skotte ◽  
Sofie K. Christensen ◽  
Filip S. Polli ◽  
Mohammad Shabani ◽  
...  

AbstractAlzheimer’s disease (AD) is an unremitting neurodegenerative disorder characterized by cerebral amyloid-β (Aβ) accumulation and gradual decline in cognitive function. Changes in brain energy metabolism arise in the preclinical phase of AD, suggesting an important metabolic component of early AD pathology. Neurons and astrocytes function in close metabolic collaboration, which is essential for the recycling of neurotransmitters in the synapse. However, this crucial metabolic interplay during the early stages of AD development has not been sufficiently investigated. Here, we provide an integrative analysis of cellular metabolism during the early stages of Aβ accumulation in the cerebral cortex and hippocampus of the 5xFAD mouse model of AD. Our electrophysiological examination revealed an increase in spontaneous excitatory signaling in the 5xFAD hippocampus. This hyperactive neuronal phenotype coincided with decreased hippocampal tricarboxylic acid (TCA) cycle metabolism mapped by stable 13C isotope tracing. Particularly, reduced astrocyte TCA cycle activity and decreased glutamine synthesis led to hampered neuronal GABA synthesis in the 5xFAD hippocampus. In contrast, the cerebral cortex of 5xFAD mice displayed an elevated capacity for oxidative glucose metabolism, which may suggest a metabolic compensation in this brain region. We found limited changes when we explored the brain proteome and metabolome of the 5xFAD mice, supporting that the functional metabolic disturbances between neurons and astrocytes are early primary events in AD pathology. In addition, synaptic mitochondrial and glycolytic function was selectively impaired in the 5xFAD hippocampus, whereas non-synaptic mitochondrial function was maintained. These findings were supported by ultrastructural analyses demonstrating disruptions in mitochondrial morphology, particularly in the 5xFAD hippocampus. Collectively, our study reveals complex regional and cell-specific metabolic adaptations in the early stages of amyloid pathology, which may be fundamental for the progressing synaptic dysfunctions in AD.


2020 ◽  
Vol 21 (3) ◽  
pp. 1144
Author(s):  
Ariel Angel ◽  
Rotem Volkman ◽  
Tabitha Grace Royal ◽  
Daniel Offen

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and is the most common form of dementia in the elderly. Caspases, a family of cysteine proteases, are major mediators of apoptosis and inflammation. Caspase-6 is considered to be an up-stream modulator of AD pathogenesis as active caspase-6 is abundant in neuropil threads, neuritic plaques, and neurofibrillary tangles of AD brains. In order to further elucidate the role of caspase-6 activity in the pathogenesis of AD, we produced a double transgenic mouse model, combining the 5xFAD mouse model of AD with caspase-6 knock out (C6-KO) mice. Behavioral examinations of 5xFAD/C6-KO double transgenic mice showed improved performance in spatial learning, memory, and anxiety/risk assessment behavior, as compared to 5xFAD mice. Hippocampal mRNA expression analyses showed significantly reduced levels of inflammatory mediator TNF-α, while the anti-inflammatory cytokine IL-10 was increased in 5xFAD/C6-KO mice. A significant reduction in amyloid-β plaques could be observed and immunohistochemistry analyses showed reduced levels of activated microglia and astrocytes in 5xFAD/C6-KO, compared to 5xFAD mice. Together, these results indicate a substantial role for caspase-6 in the pathology of the 5xFAD model of AD and suggest further validation of caspase-6 as a potential therapeutic target for AD.


2019 ◽  
Vol 20 (16) ◽  
pp. 3992 ◽  
Author(s):  
Sujin Kim ◽  
Yunkwon Nam ◽  
Yu-on Jeong ◽  
Hyun Ha Park ◽  
Seong-kyung Lee ◽  
...  

It is widely known that the degeneration of neural circuits is prominent in the brains of Alzheimer’s disease (AD) patients. The reciprocal connectivity of the medial septum (MS) and hippocampus, which constitutes the septo-hippocampo-septal (SHS) loop, is known to be associated with learning and memory. Despite the importance of the reciprocal projections between the MS and hippocampus in AD, the alteration of bidirectional connectivity between two structures has not yet been investigated at the mesoscale level. In this study, we adopted AD animal model, five familial AD mutations (5XFAD) mice, and anterograde and retrograde tracers, BDA and DiI, respectively, to visualize the pathology-related changes in topographical connectivity of the SHS loop in the 5XFAD brain. By comparing 4.5-month-old and 14-month-old 5XFAD mice, we successfully identified key circuit components of the SHS loop altered in 5XFAD brains. Remarkably, the SHS loop began to degenerate in 4.5-month-old 5XFAD mice before the onset of neuronal loss. The impairment of connectivity between the MS and hippocampus was accelerated in 14-month-old 5XFAD mice. These results demonstrate, for the first time, topographical evidence for the degradation of the interconnection between the MS and hippocampus at the mesoscale level in a mouse model of AD. Our results provide structural and functional insights into the interconnectivity of the MS and hippocampus, which will inform the use and development of various therapeutic approaches that target neural circuits for the treatment of AD.


2020 ◽  
Vol 13 (7) ◽  
pp. 150 ◽  
Author(s):  
Anishchal A. Pratap ◽  
R. M. Damian Holsinger

Metabolic syndromes share common pathologies with Alzheimer’s disease (AD). Adiponectin, an adipocyte-derived protein, regulates energy metabolism via its receptors, AdipoR1 and AdipoR2. To investigate the distribution of adiponectin receptors (AdipoRs) in Alzheimer’s, we examined their expression in the aged 5XFAD mouse model of AD. In age-matched wild-type mice, we observed neuronal expression of both ARs throughout the brain as well as endothelial expression of AdipoR1. The pattern of receptor expression in the aged 5XFAD brain was significantly perturbed. Here, we observed decreased neuronal expression of both ARs and decreased endothelial expression of AdipoR1, but robust expression of AdipoR2 in activated astrocytes. We also observed AdipoR2-expressing astrocytes in the dorsomedial hypothalamic and thalamic mediodorsal nuclei, suggesting the possibility that astrocytes utilise AdipoR2 signalling to fuel their activated state in the AD brain. These findings provide further evidence of a metabolic disturbance and demonstrate a potential shift in energy utilisation in the AD brain, supporting imaging studies performed in AD patients.


2021 ◽  
Vol 22 (1) ◽  
pp. 461
Author(s):  
Sónia C. Correia ◽  
Nuno J. Machado ◽  
Marco G. Alves ◽  
Pedro F. Oliveira ◽  
Paula I. Moreira

The lack of effective disease-modifying therapeutics to tackle Alzheimer’s disease (AD) is unsettling considering the actual prevalence of this devastating neurodegenerative disorder worldwide. Intermittent hypoxic conditioning (IHC) is a powerful non-pharmacological procedure known to enhance brain resilience. In this context, the aim of the present study was to investigate the potential long-term protective impact of IHC against AD-related phenotype, putting a special focus on cognition and mitochondrial bioenergetics and dynamics. For this purpose, six-month-old male triple transgenic AD mice (3×Tg-AD) were submitted to an IHC protocol for two weeks and the behavioral assessment was performed at 8.5 months of age, while the sacrifice of mice occurred at nine months of age and their brains were removed for the remaining analyses. Interestingly, IHC was able to prevent anxiety-like behavior and memory and learning deficits and significantly reduced brain cortical levels of amyloid-β (Aβ) in 3×Tg-AD mice. Concerning brain energy metabolism, IHC caused a significant increase in brain cortical levels of glucose and a robust improvement of the mitochondrial bioenergetic profile in 3×Tg-AD mice, as mirrored by the significant increase in mitochondrial membrane potential (ΔΨm) and respiratory control ratio (RCR). Notably, the improvement of mitochondrial bioenergetics seems to result from an adaptative coordination of the distinct but intertwined aspects of the mitochondrial quality control axis. Particularly, our results indicate that IHC favors mitochondrial fusion and promotes mitochondrial biogenesis and transport and mitophagy in the brain cortex of 3×Tg-AD mice. Lastly, IHC also induced a marked reduction in synaptosomal-associated protein 25 kDa (SNAP-25) levels and a significant increase in both glutamate and GABA levels in the brain cortex of 3×Tg-AD mice, suggesting a remodeling of the synaptic microenvironment. Overall, these results demonstrate the effectiveness of the IHC paradigm in forestalling the AD-related phenotype in the 3×Tg-AD mouse model, offering new insights to AD therapy and forcing a rethink concerning the potential value of non-pharmacological interventions in clinical practice.


2021 ◽  
Vol 14 (1) ◽  
pp. 52
Author(s):  
Kirsty Hamilton ◽  
Jenni Harvey

It is widely accepted that the endocrine hormone leptin controls food intake and energy homeostasis via activation of leptin receptors expressed on hypothalamic arcuate neurons. The hippocampal formation also displays raised levels of leptin receptor expression and accumulating evidence indicates that leptin has a significant impact on hippocampal synaptic function. Thus, cellular and behavioural studies support a cognitive enhancing role for leptin as excitatory synaptic transmission, synaptic plasticity and glutamate receptor trafficking at hippocampal Schaffer collateral (SC)-CA1 synapses are regulated by leptin, and treatment with leptin enhances performance in hippocampus-dependent memory tasks. Recent studies indicate that hippocampal temporoammonic (TA)-CA1 synapses are also a key target for leptin. The ability of leptin to regulate TA-CA1 synapses has important functional consequences as TA-CA1 synapses are implicated in spatial and episodic memory processes. Moreover, degeneration is initiated in the TA pathway at very early stages of Alzheimer’s disease, and recent clinical evidence has revealed links between plasma leptin levels and the incidence of Alzheimer’s disease (AD). Additionally, accumulating evidence indicates that leptin has neuroprotective actions in various AD models, whereas dysfunctions in the leptin system accelerate AD pathogenesis. Here, we review the data implicating the leptin system as a potential novel target for AD, and the evidence that boosting the hippocampal actions of leptin may be beneficial.


Sign in / Sign up

Export Citation Format

Share Document