scholarly journals Lipidic Nano-Sized Emulsomes Potentiates the Cytotoxic and Apoptotic Effects of Raloxifene Hydrochloride in MCF-7 Human Breast Cancer Cells: Factorial Analysis and In Vitro Anti-Tumor Activity Assessment

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 783
Author(s):  
Hibah M. Aldawsari ◽  
Osama A.A. Ahmed ◽  
Nabil A. Alhakamy ◽  
Thikryat Neamatallah ◽  
Usama A. Fahmy ◽  
...  

Raloxifene hydrochloride (RLX), an antiosteoporotic agent, has been utilized for guarding against breast cancer and recently, for the disease management owing to its estrogen antagonist activity. Nevertheless, RLX exhibits poor bioavailability that could be attributed to reduced water solubility and first pass metabolism. To overcome these challenges, this study aimed at formulating and optimizing RLX emulsomes (RLX-EMLs) to enhance the drug antitumor activity. A 4131 factorial design was employed for assessing the effect of lipoid: solid lipid ratio and solid lipid type on the emulsomes characteristics. The anticancer potential of the optimized formulation and apoptotic parameters were assessed. Vesicle size, entrapment, and release efficiency were significantly influenced by both variables, while zeta potential was influenced by lipoid: solid lipid at p < 0.05. The optimal formulation exhibited vesicle size of 236 ± 8.6 nm, zeta potential of −18.6 ± 0.7 mV, drug entrapment of 98.9 ± 4.9%, and release efficiency of 42.7 ± 1.8%. MTT assay showed concentration-dependent inhibition of MCF-7 cells viability. In addition, cells treated with RLX-EMLs showed significant arrest at G2/M phase associated with significant increase in apoptotic and necrotic cells. The enhanced cytotoxic and anti-proliferative effect of RLX-EMLs relative to raw drug was authenticated through increased Bax/Bcl-2 ratio, caspase-9 activation and depletion of mitochondrial membrane potential.

Author(s):  
Omaima Mohamed AboulWafa ◽  
Hoda Mohamed Gamal El-Din Daabees ◽  
Eman Salah Ezz-ElDien

Background: Breast cancer (BC) is among the leading causes of death among women worldwide. Medical interest has focused on quinazolinone derivatives approved and utilized in antitumor medications. Objective: Novel quinazolinone-based oxobutanonitrile derivatives were designed, synthesized, and screened for in vitro anti-BC activity. Methods: The antiproliferative activities were determined using MTT assay against MCF-7 and MDA-MB-231 cell lines. EGFR, ARO, and caspase-9 enzymes were selected to explore the mechanism of action of the most potent compounds. Results: Tested compounds showed better EGFRIs than ARIs. In addition, significant overexpression in caspase-9 level in treated MCF-7 breast cell line samples was observed with the most active compounds. The thienyl derivative 5 induced the greatest activation in caspase-9 level in treated MCF-7 breast cancer samples. The o-tolylhydrazone 3b, exhibiting promising ARO inhibition and weak EGFR inhibition, produced a noticeable high overexpression of caspase-9 and showed pre-G1 apoptosis and cell cycle arrest at G2/M phase for MCF-7 cells and at S-phase for MDA-MB-231 cells. Docking results revealed that 3b, elicited binding affinities to ARO comparable to those of letrozole. Conclusion: The obtained results support the therapeutic importance of some of these compounds as anti-BC agents in light of the simple methodology used for their synthesis. Their design offered a way for the optimization and development of apoptotic quinazolinone-based ARO and EGFR inhibitors.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Shengxian Zhao ◽  
Yin Cao ◽  
Zhenzhen Cui ◽  
Jiayun Zhang ◽  
Zhixiang Pan ◽  
...  

A series of 2-arylidene-N-(quinolin-6-yl)hydrazine-1-carboxamides 5a–5o were synthesized and characterized. The synthesized compounds (5a–5o) were screened in vitro against three breast cancer cell lines: SKBR3, MDA-MB-231, and MCF-7 cancer cell lines by the MTT assay. According to MTT results, compounds 5k and 5l showed better antiproliferative activities over MCF-7 cell lines with IC50 values of 8.50 and 12.51 μM. Colony formation assay indicated 5k/5l treatment obviously inhibited the growth of MCF-7 cells and 5k/5l-induced cell cycle was arrested in the G2-M phase. Moreover, 5k/5l significantly increased the level of cleaved PARP and induced the apoptosis in MCF-7 cells. In addition, compared to Hela cells, MCF-7 cells were more sensitive to 5k/5l treatment.


Author(s):  
Pamu Sandhya

The current research was aimed at formulation of Lapatinib loaded solid lipid nanoparticles (SLNs) followed by evaluation for effective treatment of breast cancer. The formulations prepared by homogenization and ultrasonication and evaluated for zeta potential, particle size, polydispersity index, entrapment efficiency and in- vitro dissolution studies. Entrapment efficiency studies indicated proportional relation between concentration of lipid and the amount of drug entrapped. The physicochemical parameter evaluation data indicated 94.27% entrapment efficiency, 130 nm particle size and -19.9 zeta potential for stable formulation. The in vitro drug dissolution studies indicated that Lapatinib loaded SLNs (F6) formulated with Dynasan 116 and Egg Lecithin was suitable for anti-cancer therapy with higher drug dissolution rate.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 141 ◽  
Author(s):  
Nagavendra Kommineni ◽  
Shaheen Mahira ◽  
Abraham Domb ◽  
Wahid Khan

Jevtana® is a micellar cabazitaxel (CBZ) solution that was approved for prostate cancer in 2010, and recently, this drug has been reported for breast cancer. The purpose of this study is to evaluate the mediated delivery of CBZ via liposomes and nanoparticles (NPs) for the treatment of breast cancer and compare these with a micellar formulation that is currently in clinical use. CBZ-loaded nanocarriers were prepared with particle sizes between 70–110 nm, and with the sustained in vitro release of CBZ for more than 28 days. Cytotoxicity studies on MCF-7 and MDA-MB-231 cells demonstrated the toxic potential of these nanocarriers. Cellular internalization revealed that NPs and liposomes have better permeability than micelles. Cell cycle analysis and apoptosis studies on MCF-7 and MDA-MB-231 cells confirmed G2/M phase arrest as well as cell death due to apoptosis and necrosis, where formulations were found to be effective compared to a micellar CBZ solution. Results from pharmacokinetic studies revealed that there is an increased circulation half-life and mean residence time for CBZ liposomes and NPs in comparison with a micellar CBZ solution. CBZ liposomes and NPs showed a reduction in hemolysis and neutropenia in comparison with a micellar CBZ solution in rats.


2020 ◽  
Vol 21 (14) ◽  
pp. 1528-1538
Author(s):  
Sarah Albogami ◽  
Hadeer Darwish ◽  
Hala M. Abdelmigid ◽  
Saqer Alotaibi ◽  
Ahmed Nour El-Deen ◽  
...  

Background: In Saudi Arabia, the incidence and mortality rates of breast cancer are high. Although current treatments are effective, breast cancer cells develop resistance to these treatments. Numerous studies have demonstrated that active compounds in plant extracts, such as the phenolic compound Rosmarinic Acid (RA), exert anti-cancer effects. Objective: We investigated the anticancer properties of methanolic crude extracts of seedlings and calli of Rosmarinus officinalis and Coleus hybridus, two Lamiaceae species. Methods: MCF-7 human breast cancer cells were treated with methanolic crude extracts obtained from plant calli and seedlings generated in vitro, and cell proliferation was evaluated. Transcriptional profiling of the seedling and callus tissues was also conducted. Results: The mRNA expression levels of RA genes were higher in C. hybridus seedlings than in R. officinalis seedlings, as well as in C. hybridus calli than in R. officinalis calli, except for TAT and C4H. In addition, seedling and callus extracts of both R. officinalis and C. hybridus showed anti-proliferative effects against MCF-7 cells after 24 or 48 h of treatment. Discussion: At a low concentration of 10 μg/mL, C. hybridus calli and seedling extracts showed the most significant anti-proliferative effects after 24 and 48 h of exposure (p < 0.01); controls (doxorubicin) also showed significant inhibition, but lesser than that observed with C. hybridus (p < 0.05). Results with R. officinalis callus and seedling extracts did not significantly differ from those with untreated cells. Conclusion: Methanolic extracts of R. officinalis and C. hybridus are potentially valuable options for breast cancer treatment.


2018 ◽  
Vol 18 (17) ◽  
pp. 1483-1493
Author(s):  
Ricardo Imbroisi Filho ◽  
Daniel T.G. Gonzaga ◽  
Thainá M. Demaria ◽  
João G.B. Leandro ◽  
Dora C.S. Costa ◽  
...  

Background: Cancer is a major cause of death worldwide, despite many different drugs available to treat the disease. This high mortality rate is largely due to the complexity of the disease, which results from several genetic and epigenetic changes. Therefore, researchers are constantly searching for novel drugs that can target different and multiple aspects of cancer. Experimental: After a screening, we selected one novel molecule, out of ninety-four triazole derivatives, that strongly affects the viability and proliferation of the human breast cancer cell line MCF-7, with minimal effects on non-cancer cells. The drug, named DAN94, induced a dose-dependent decrease in MCF-7 cells viability, with an IC50 of 3.2 ± 0.2 µM. Additionally, DAN94 interfered with mitochondria metabolism promoting reactive oxygen species production, triggering apoptosis and arresting the cancer cells on G1/G0 phase of cell cycle, inhibiting cell proliferation. These effects are not observed when the drug was tested in the non-cancer cell line MCF10A. Using a mouse model with xenograft tumor implants, the drug preventing tumor growth presented no toxicity for the animal and without altering biochemical markers of hepatic function. Results and Conclusion: The novel drug DAN94 is selective for cancer cells, targeting the mitochondrial metabolism, which culminates in the cancer cell death. In the end, DAN94 has been shown to be a promising drug for controlling breast cancer with minimal undesirable effects.


2019 ◽  
Vol 19 (12) ◽  
pp. 1463-1472 ◽  
Author(s):  
Nil Kiliç ◽  
Yasemin Ö. Islakoğlu ◽  
İlker Büyük ◽  
Bala Gür-Dedeoğlu ◽  
Demet Cansaran-Duman

Objective: Breast Cancer (BC) is the most common type of cancer diagnosed in women. A common treatment strategy for BC is still not available because of its molecular heterogeneity and resistance is developed in most of the patients through the course of treatment. Therefore, alternative medicine resources as being novel treatment options are needed to be used for the treatment of BC. Usnic Acid (UA) that is one of the secondary metabolites of lichens used for different purposes in the field of medicine and its anti-proliferative effect has been shown in certain cancer types, suggesting its potential use for the treatment. Methods: Anti-proliferative effect of UA in BC cells (MDA-MB-231, MCF-7, BT-474) was identified through MTT analysis. Microarray analysis was performed in cells treated with the effective concentration of UA and UA-responsive miRNAs were detected. Their targets and the pathways that they involve were determined using a miRNA target prediction tool. Results: Microarray experiments showed that 67 miRNAs were specifically responsive to UA in MDA-MB-231 cells while 15 and 8 were specific to BT-474 and MCF-7 cells, respectively. The miRNA targets were mostly found to play role in Hedgehog signaling pathway. TGF-Beta, MAPK and apoptosis pathways were also the prominent ones according to the miRNA enrichment analysis. Conclusion: The current study is important as being the first study in the literature which aimed to explore the UA related miRNAs, their targets and molecular pathways that may have roles in the BC. The results of pathway enrichment analysis and anti-proliferative effects of UA support the idea that UA might be used as a potential alternative therapeutic agent for BC treatment.


Sign in / Sign up

Export Citation Format

Share Document