scholarly journals Intracellular Routing and Recognition of Lipid-Based mRNA Nanoparticles

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 945
Author(s):  
Christophe Delehedde ◽  
Luc Even ◽  
Patrick Midoux ◽  
Chantal Pichon ◽  
Federico Perche

Messenger RNA (mRNA) is being extensively used in gene therapy and vaccination due to its safety over DNA, in the following ways: its lack of integration risk, cytoplasmic expression, and transient expression compatible with fine regulations. However, clinical applications of mRNA are limited by its fast degradation by nucleases, and the activation of detrimental immune responses. Advances in mRNA applications, with the recent approval of COVID-19 vaccines, were fueled by optimization of the mRNA sequence and the development of mRNA delivery systems. Although delivery systems and mRNA sequence optimization have been abundantly reviewed, understanding of the intracellular processing of mRNA is mandatory to improve its applications. We will focus on lipid nanoparticles (LNPs) as they are the most advanced nanocarriers for the delivery of mRNA. Here, we will review how mRNA therapeutic potency can be affected by its interactions with cellular proteins and intracellular distribution.

2020 ◽  
Vol 20 (3) ◽  
pp. 195-206 ◽  
Author(s):  
Shriya Agarwal ◽  
Vinayak Agarwal ◽  
Mugdha Agarwal ◽  
Manisha Singh

Abstract: In recent times, several approaches for targeted gene therapy (GT) had been studied. However, the emergence of extracellular vesicles (EVs) as a shuttle carrying genetic information between cells has gained a lot of interest in scientific communities. Owing to their higher capabilities in dealing with short sequences of nucleic acid (mRNA, miRNA), proteins, recombinant proteins, exosomes, the most popular form of EVs are viewed as reliable biological therapeutic conveyers. They have natural access through every biological membrane and can be employed for site-specific and efficient drug delivery without eliciting any immune responses hence, qualifying as an ideal delivery vehicle. Also, there are many research studies conducted in the last few decades on using exosome-mediated gene therapy into developing an effective therapy with the concept of a higher degree of precision in gene isolation, purification and delivery mechanism loading, delivery and targeting protocols. This review discusses several facets that contribute towards developing an efficient therapeutic regime for gene therapy, highlighting limitations and drawbacks associated with current GT and suggested therapeutic regimes.


2016 ◽  
Vol 12 (5) ◽  
pp. 598-604 ◽  
Author(s):  
Tatiana N. Pashirova ◽  
Tatiana Andreani ◽  
Ana S. Macedo ◽  
Eliana B. Souto ◽  
Lucia Ya. Zakharova

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Annkristin Heine ◽  
Stefan Juranek ◽  
Peter Brossart

AbstractIn vitro-transcribed messenger RNA-based therapeutics represent a relatively novel and highly efficient class of drugs. Several recently published studies emphasize the potential efficacy of mRNA vaccines in treating different types of malignant and infectious diseases where conventional vaccine strategies and platforms fail to elicit protective immune responses. mRNA vaccines have lately raised high interest as potent vaccines against SARS-CoV2. Direct application of mRNA or its electroporation into dendritic cells was shown to induce polyclonal CD4+ and CD8+ mediated antigen-specific T cell responses as well as the production of protective antibodies with the ability to eliminate transformed or infected cells. More importantly, the vaccine composition may include two or more mRNAs coding for different proteins or long peptides. This enables the induction of polyclonal immune responses against a broad variety of epitopes within the encoded antigens that are presented on various MHC complexes, thus avoiding the restriction to a certain HLA molecule or possible immune escape due to antigen-loss. The development and design of mRNA therapies was recently boosted by several critical innovations including the development of technologies for the production and delivery of high quality and stable mRNA. Several technical obstacles such as stability, delivery and immunogenicity were addressed in the past and gradually solved in the recent years.This review will summarize the most recent technological developments and application of mRNA vaccines in clinical trials and discusses the results, challenges and future directions with a special focus on the induced innate and adaptive immune responses.


2021 ◽  
Author(s):  
Michael Whitehead ◽  
Andrew Osborne ◽  
Patrick Yu‐Wai‐Man ◽  
Keith Martin

2021 ◽  
pp. 1-7
Author(s):  
Sarah Jarrin ◽  
Abrar Hakami ◽  
Ben Newland ◽  
Eilís Dowd

Despite decades of research and billions in global investment, there remains no preventative or curative treatment for any neurodegenerative condition, including Parkinson’s disease (PD). Arguably, the most promising approach for neuroprotection and neurorestoration in PD is using growth factors which can promote the growth and survival of degenerating neurons. However, although neurotrophin therapy may seem like the ideal approach for neurodegenerative disease, the use of growth factors as drugs presents major challenges because of their protein structure which creates serious hurdles related to accessing the brain and specific targeting of affected brain regions. To address these challenges, several different delivery systems have been developed, and two major approaches—direct infusion of the growth factor protein into the target brain region and in vivo gene therapy—have progressed to clinical trials in patients with PD. In addition to these clinically evaluated approaches, a range of other delivery methods are in various degrees of development, each with their own unique potential. This review will give a short overview of some of these alternative delivery systems, with a focus on ex vivo gene therapy and biomaterial-aided protein and gene delivery, and will provide some perspectives on their potential for clinical development and translation.


2021 ◽  
Vol 7 (3) ◽  
pp. eaba1028
Author(s):  
Rachel S. Riley ◽  
Meghana V. Kashyap ◽  
Margaret M. Billingsley ◽  
Brandon White ◽  
Mohamad-Gabriel Alameh ◽  
...  

Clinical advances enable the prenatal diagnosis of genetic diseases that are candidates for gene and enzyme therapies such as messenger RNA (mRNA)–mediated protein replacement. Prenatal mRNA therapies can treat disease before the onset of irreversible pathology with high therapeutic efficacy and safety due to the small fetal size, immature immune system, and abundance of progenitor cells. However, the development of nonviral platforms for prenatal delivery is nascent. We developed a library of ionizable lipid nanoparticles (LNPs) for in utero mRNA delivery to mouse fetuses. We screened LNPs for luciferase mRNA delivery and identified formulations that accumulate within fetal livers, lungs, and intestines with higher efficiency and safety compared to benchmark delivery systems, DLin-MC3-DMA and jetPEI. We demonstrate that LNPs can deliver mRNAs to induce hepatic production of therapeutic secreted proteins. These LNPs may provide a platform for in utero mRNA delivery for protein replacement and gene editing.


Author(s):  
Peter G. Kremsner ◽  
Philipp Mann ◽  
Arne Kroidl ◽  
Isabel Leroux-Roels ◽  
Christoph Schindler ◽  
...  

Summary Background We used the RNActive® technology platform (CureVac N.V., Tübingen, Germany) to prepare CVnCoV, a COVID-19 vaccine containing sequence-optimized mRNA coding for a stabilized form of SARS-CoV‑2 spike (S) protein encapsulated in lipid nanoparticles (LNP). Methods This is an interim analysis of a dosage escalation phase 1 study in healthy 18–60-year-old volunteers in Hannover, Munich and Tübingen, Germany, and Ghent, Belgium. After giving 2 intramuscular doses of CVnCoV or placebo 28 days apart we assessed solicited local and systemic adverse events (AE) for 7 days and unsolicited AEs for 28 days after each vaccination. Immunogenicity was measured as enzyme-linked immunosorbent assay (ELISA) IgG antibodies to SARS-CoV‑2 S‑protein and receptor binding domain (RBD), and SARS-CoV‑2 neutralizing titers (MN50). Results In 245 volunteers who received 2 CVnCoV vaccinations (2 μg, n = 47, 4 μg, n = 48, 6 μg, n = 46, 8 μg, n = 44, 12 μg, n = 28) or placebo (n = 32) there were no vaccine-related serious AEs. Dosage-dependent increases in frequency and severity of solicited systemic AEs, and to a lesser extent local AEs, were mainly mild or moderate and transient in duration. Dosage-dependent increases in IgG antibodies to S‑protein and RBD and MN50 were evident in all groups 2 weeks after the second dose when 100% (23/23) seroconverted to S‑protein or RBD, and 83% (19/23) seroconverted for MN50 in the 12 μg group. Responses to 12 μg were comparable to those observed in convalescent sera from known COVID-19 patients. Conclusion In this study 2 CVnCoV doses were safe, with acceptable reactogenicity and 12 μg dosages elicited levels of immune responses that overlapped those observed in convalescent sera.


2010 ◽  
Vol 51 (11) ◽  
pp. 5403 ◽  
Author(s):  
Henry F. Edelhauser ◽  
Cheryl L. Rowe-Rendleman ◽  
Michael R. Robinson ◽  
Daniel G. Dawson ◽  
Gerald J. Chader ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document