scholarly journals Polymeric Lipid Hybrid Nanoparticles (PLNs) as Emerging Drug Delivery Platform—A Comprehensive Review of Their Properties, Preparation Methods, and Therapeutic Applications

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1291
Author(s):  
Durgaramani Sivadasan ◽  
Muhammad Hadi Sultan ◽  
Osama Madkhali ◽  
Yosif Almoshari ◽  
Neelaveni Thangavel

Polymeric lipid hybrid nanoparticles (PLNs) are core–shell nanoparticles made up of a polymeric kernel and lipid/lipid–PEG shells that have the physical stability and biocompatibility of both polymeric nanoparticles and liposomes. PLNs have emerged as a highly potent and promising nanocarrier for a variety of biomedical uses, including drug delivery and biomedical imaging, owing to recent developments in nanomedicine. In contrast with other forms of drug delivery systems, PLNs have been regarded as seamless and stable because they are simple to prepare and exhibit excellent stability. Natural, semi-synthetic, and synthetic polymers have been used to make these nanocarriers. Due to their small scale, PLNs can be used in a number of applications, including anticancer therapy, gene delivery, vaccine delivery, and bioimaging. These nanoparticles are also self-assembled in a reproducible and predictable manner using a single or two-step nanoprecipitation process, making them significantly scalable. All of these positive attributes therefore make PLNs an attractive nanocarrier to study. This review delves into the fundamentals and applications of PLNs as well as their formulation parameters, several drug delivery strategies, and recent advancements in clinical trials, giving a comprehensive insight into the pharmacokinetic and biopharmaceutical aspects of these hybrid nanoparticles.

2021 ◽  
Author(s):  
Yudhishtir Singh Baghel ◽  
Sankha Bhattacharya

Introduction: In the pharmaceutical industry, liposomes and polymeric nanoparticles are the two most commonly studied delivery vehicles. A new technique uses lipid-polymeric hybrid nanoparticles (LPHNPs) with a polymeric core, and a shell made up of lipid-lipid-PEG lipids. They have properties which complement polymer nanoparticles and liposomes, and they have the potential to improve the physical stability and biocompatibility of the active pharmaceutical ingredient encapsulated in them. Evaporating the solvent from a dual-phase solution containing lipid and polymer is one of the most effective methods for producing the lipid polymeric hybrid nanoparticles. The LPHNPs applications has also been significantly expanded to include combinational and active targeted drug delivery, as well as delivery of genetic materials, vaccines, and diagnostic imaging agents, in addition to single drug delivery for anticancer therapy, like Glioblastoma. Main goal: The main agenda of this compilation was to address the effects of LPHNPs on Glioblastoma treatment. This compilation also highlights some of the formulation techniques and issues that arise during the preparation of LPHNPs. This review also discusses recent developments in core-shell lipid-polymer hybrid nanoparticles, which were conferred in considerable detail later in this article. Conclusion: The main issue which arises while using nanoparticles with polymer is entrapment efficiency. Because of their hybrid components, LPHNPs have proven to solve this problem to a large extent. The recent research trends suggest that lipid polymeric hybrid nanoparticles will prove to be highly effective or productive in treating diseases such as Glioblastoma.


2020 ◽  
Vol 21 (9) ◽  
pp. 649-660
Author(s):  
Subashini Raman ◽  
Syed Mahmood ◽  
Ayah R. Hilles ◽  
Md Noushad Javed ◽  
Motia Azmana ◽  
...  

Background: Blood-brain barrier (BBB) plays a most hindering role in drug delivery to the brain. Recent research comes out with the nanoparticles approach, is continuously working towards improving the delivery to the brain. Currently, polymeric nanoparticle is extensively involved in many therapies for spatial and temporal targeted areas delivery. Methods: We did a non-systematic review, and the literature was searched in Google, Science Direct and PubMed. An overview is provided for the formulation of polymeric nanoparticles using different methods, effect of surface modification on the nanoparticle properties with types of polymeric nanoparticles and preparation methods. An account of different nanomedicine employed with therapeutic agent to cross the BBB alone with biodistribution of the drugs. Results: We found that various types of polymeric nanoparticle systems are available and they prosper in delivering the therapeutic amount of the drug to the targeted area. The effect of physicochemical properties on nanoformulation includes change in their size, shape, elasticity, surface charge and hydrophobicity. Surface modification of polymers or nanocarriers is also vital in the formulation of nanoparticles to enhance targeting efficiency to the brain. Conclusion: More standardized methods for the preparation of nanoparticles and to assess the relationship of surface modification on drug delivery. While the preparation and its output like drug loading, particle size, and charge, permeation is always conflicted, so it requires more attention for the acceptance of nanoparticles for brain delivery.


ACS Nano ◽  
2008 ◽  
Vol 2 (8) ◽  
pp. 1696-1702 ◽  
Author(s):  
Liangfang Zhang ◽  
Juliana M. Chan ◽  
Frank X. Gu ◽  
June-Wha Rhee ◽  
Andrew Z. Wang ◽  
...  

2020 ◽  
Vol 16 (3) ◽  
pp. 399-412
Author(s):  
Alfonso Toro-Córdova ◽  
Beatriz Sanz ◽  
Gerardo F. Goya

This review provides an updated vision about the recent developments in the field of drug vectorization using functional nanoparticles and other nanovectors. From a large number of these nanotechnology-based drug delivery systems that emerge nearly every week, only a tiny fraction reaches a pre-clinical or clinical phase study. In this report, we intend to provide contextual information about those nanocarriers and release methods that have shown the best outcomes at in vitro and in vivo experiments, highlighting those with proven therapeutic efficiency in humans. From silicabased porous nanoparticles to liposomes or polymeric nanoparticles, each one of these nanosystems has its advantages and drawbacks. We describe and discuss briefly those approaches that, in our criterion, have provided significant advancements over existing therapies at the in vivo level. This work also provides a general view of those commercially available nanovectors and their specific area of therapeutic action.


2017 ◽  
Vol 23 (2) ◽  
pp. 302-318 ◽  
Author(s):  
Emma Piacentini ◽  
Marijana Dragosavac ◽  
Lidietta Giorno

Nowadays, the rational design of particles is an important issue in the development of pharmaceutical medicaments. Advances in manufacturing methods are required to design new pharmaceutical particles with target properties in terms of particle size, particle size distribution, structure and functional activity. Membrane emulsification is emerging as a promising tool for the production of emulsions and solidified particles with tailored properties in many fields. In this review, the current use of membrane emulsification in the production of pharmaceutical particles is highlighted. Membrane emulsification devices designed for small-scale testing as well as membrane-based methods suitable for large-scale production are discussed. A special emphasis is put on the important factors that contribute to the encapsulation efficiency and drug loading. The most recent studies about the utilization of the membrane emulsification for preparing particles as drug delivery systems for anticancer, proteins/peptide, lipophilic and hydrophilic bioactive drugs are reviewed.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5052
Author(s):  
Chaw Yee Beh ◽  
Ray Putra Prajnamitra ◽  
Li-Lun Chen ◽  
Patrick Ching-Ho Hsieh

Biomimetic nanoparticles have recently emerged as a novel drug delivery platform to improve drug biocompatibility and specificity at the desired disease site, especially the tumour microenvironment. Conventional nanoparticles often encounter rapid clearance by the immune system and have poor drug-targeting effects. The rapid development of nanotechnology provides an opportunity to integrate different types of biomaterials onto the surface of nanoparticles, which enables them to mimic the natural biological features and functions of the cells. This mimicry strategy favours the escape of biomimetic nanoparticles from clearance by the immune system and reduces potential toxic side effects. Despite the rapid development in this field, not much has progressed to the clinical stage. Thus, there is an urgent need to develop biomimetic-based nanomedicine to produce a highly specific and effective drug delivery system, especially for malignant tumours, which can be used for clinical purposes. Here, the recent developments for various types of biomimetic nanoparticles are discussed, along with their applications for cancer imaging and treatments.


2019 ◽  
Vol 16 (10) ◽  
pp. 887-901 ◽  
Author(s):  
Kanchan Kashyap ◽  
Rahul Shukla

: Blood-brain barrier (BBB) provides restrictions for the transportation of various therapeutic agents to the brain. Efforts to directly target the brain by olfactory as well as trigeminal nerve pathway, bypassing BBB, have grown significantly in recent times. The intranasal route of transportation of the drug encompasses ability for the delivery of drug directly to the brain, improves site-specificity in the brain and avoids systemic side effects. In the current era, novel drug delivery systems are useful tools for targeting the brain without providing any harmful effects in nasal mucosa as well as the central nervous system. The complex structure of nasal cavity, mucociliary clearance, degradation by the enzymes present in nasal cavity and pathological conditions like rhinitis, common cold, etc. are the major disputes for nasal drug delivery. The use of nanotechnological approaches like solid lipid nanoparticles, polymeric nanoparticles, nanoemulsions, liposomes and polymeric micelles provides the ability to overcome these barriers. There are several emerging nasal drug delivery technologies produced by various pharmaceutical companies to conquer these hurdles. This review tries to address the recent developments in the area of direct drug delivery to the brain through the nasal route.


Author(s):  
Shaikh Bilal J. ◽  
Patil Abhishek S. ◽  
Bhosale Ankush S. ◽  
Raut Indrayani D. ◽  
Nitalikar Manojkumar M.

Recent developments in nanotechnology have made the framework for the growth of new nanoscale biomaterials with numerous potential uses in nanomedicine. The nanosponge is a new and emerging technology that can be used to target medicine delivery in a precise and regulated manner. Nanosponge is an important component of advanced medication delivery. It is a specialized assisting system for regulated medication delivery of both lipophilic and hydrophilic medicines in a regulated manner. Effective medication delivery at a specific location allowed for more exact control of release rates and boosted health-care system compliance, but the chemistry having complex shape complicated things. The invention of nanosponges, on the other hand, has provided significant approach to tackling this problem. The technology of Nanosponge has been studied widely for the delivery of drugs for oral, topical, and parental administration. Enzymes, proteins, vaccines, and antibodies can all be delivered effectively using nanosponges. It is more effective for targeted drug delivery systems because it improves solubility, bioavailability, and decreases side effects by releasing the drug at specific site. It has the ability to improve drug solubility and can be manufactured into oral, topical, and parenteral dose forms. This type of carrier system is best for drugs with low bioavailability. Nanosponges can contain both lipophilic and hydrophilic medicines. Nanosponges are extremely permeable, with a high proclivity for ensuring dynamic particles and programmable delivery. This review article discusses nanosponges in general, their advantages & disadvantages, mechanism; factors influence nanosponge, preparation methods, evaluation parameters as well as applications.


Author(s):  
Unnati Garg ◽  
Karuna Jain

Transdermal delivery over the past decade has become the field of interest for drug delivery due to its various advantages such as no first-pass metabolism, increased drug bioavailability, and easy administration. Different vesicle systems like ethosomes, liposomes, niosomes, and transferosomes along with particle systems like lipid nanoparticles, polymeric nanoparticles, carbon nanotubes, and fullerenes have been developed. These vesicles and particle systems have been developed using various easy and effective methods like cold injection method, rotary film evaporation, thin film hydration, high shear homogenization, solvent extraction method, and many more. These drug delivery systems are a very effective and feasible option for transdermal drug delivery and further developments can be made to increase their use. This article explains in detail the preparation methods and applications for these drug delivery systems.


Sign in / Sign up

Export Citation Format

Share Document