scholarly journals New Intracellular Peptide Derived from Hemoglobin Alpha Chain Induces Glucose Uptake and Reduces Blood Glycemia

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2175
Author(s):  
Renée N. O. Silva ◽  
Ricardo P. Llanos ◽  
Rosangela A. S. Eichler ◽  
Thiago B. Oliveira ◽  
Fábio C. Gozzo ◽  
...  

Intracellular peptides were shown to derive from proteasomal degradation of proteins from mammalian and yeast cells, being suggested to play distinctive roles both inside and outside these cells. Here, the role of intracellular peptides previously identified from skeletal muscle and adipose tissues of C57BL6/N wild type (WT) and neurolysin knockout mice were investigated. In differentiated C2C12 mouse skeletal muscle cells, some of these intracellular peptides like insulin activated the expression of several genes related to muscle contraction and gluconeogenesis. One of these peptides, LASVSTVLTSKYR (Ric4; 600 µg/kg), administrated either intraperitoneally or orally in WT mice, decreased glycemia. Neither insulin (10 nM) nor Ric4 (100 µM) induced glucose uptake in adipose tissue explants obtained from conditional knockout mice depleted of insulin receptor. Ric4 (100 µM) similarly to insulin (100 nM) induced Glut4 translocation to the plasma membrane of C2C12 differentiated cells, and increased GLUT4 mRNA levels in epididymal adipose tissue of WT mice. Ric4 (100 µM) increased both Erk and Akt phosphorylation in C2C12, as well as in epididymal adipose tissue from WT mice; Erk, but not Akt phosphorylation was activated by Ric4 in tibial skeletal muscle from WT mice. Ric4 is rapidly degraded in vitro by WT liver and kidney crude extracts, such a response that is largely reduced by structural modifications such as N-terminal acetylation, C-terminal amidation, and substitution of Leu8 for DLeu8 (Ac-LASVSTV[DLeu]TSKYR-NH2; Ric4-16). Ric4-16, among several Ric4 derivatives, efficiently induced glucose uptake in differentiated C2C12 cells. Among six Ric4-derivatives evaluated in vivo, Ac-LASVSTVLTSKYR-NH2 (Ric4-2; 600 µg/kg) and Ac-LASVSTV[DLeu]TSKYR (Ric4-15; 600 µg/kg) administrated orally efficiently reduced glycemia in a glucose tolerance test in WT mice. The potential clinical application of Ric4 and Ric4-derivatives deserves further attention.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Cassie A. Parks ◽  
Katherine Pak ◽  
Iago Pinal-Fernandez ◽  
Wilson Huang ◽  
Assia Derfoul ◽  
...  

AbstractThe expression of Trim33 (Tif1γ) increases in skeletal muscles during regeneration and decreases upon maturation. Although Trim33 is required for the normal development of other tissues, its role in skeletal muscle is unknown. The current study aimed to define the role of Trim33 in muscle development and regeneration. We generated mice with muscle-specific conditional knockout of Trim33 by combining floxed Trim33 and Cre recombinase under the Pax7 promoter. Muscle regeneration was induced by injuring mouse muscles with cardiotoxin. We studied the consequences of Trim33 knockdown on viability, body weight, skeletal muscle histology, muscle regeneration, and gene expression. We also studied the effect of Trim33 silencing in satellite cells and the C2C12 mouse muscle cell line. Although Trim33 knockdown mice weighed less than control mice, their skeletal muscles were histologically unremarkable and regenerated normally following injury. Unexpectedly, RNAseq analysis revealed dramatically increased expression of cholecystokinin (CCK) in regenerating muscle from Trim33 knockout mice, satellite cells from Trim33 knockout mice, and C2C12 cells treated with Trim33 siRNA. Trim33 knockdown had no demonstrable effect on muscle differentiation or regeneration. However, Trim33 knockdown induced CCK expression in muscle, suggesting that suppression of CCK expression requires Trim33.


2021 ◽  
Vol 22 (19) ◽  
pp. 10753
Author(s):  
Kiko Hasegawa ◽  
Nobuyuki Takenaka ◽  
Kenya Tanida ◽  
Man Piu Chan ◽  
Mizuki Sakata ◽  
...  

Insulin stimulates glucose uptake in adipose tissue and skeletal muscle by inducing plasma membrane translocation of the glucose transporter GLUT4. Although the small GTPase Rac1 is a key regulator downstream of phosphoinositide 3-kinase (PI3K) and the protein kinase Akt2 in skeletal muscle, it remains unclear whether Rac1 also regulates glucose uptake in white adipocytes. Herein, we investigated the physiological role of Rac1 in white adipocytes by employing adipocyte-specific rac1 knockout (adipo-rac1-KO) mice. Subcutaneous and epididymal white adipose tissues (WATs) in adipo-rac1-KO mice showed significant reductions in size and weight. Actually, white adipocytes lacking Rac1 were smaller than controls. Insulin-stimulated glucose uptake and GLUT4 translocation were abrogated in rac1-KO white adipocytes. On the other hand, GLUT4 translocation was augmented by constitutively activated PI3K or Akt2 in control, but not in rac1-KO, white adipocytes. Similarly, to skeletal muscle, the involvement of another small GTPase RalA downstream of Rac1 was demonstrated. In addition, mRNA levels of various lipogenic enzymes were down-regulated in rac1-KO white adipocytes. Collectively, these results suggest that Rac1 is implicated in insulin-dependent glucose uptake and lipogenesis in white adipocytes, and reduced insulin responsiveness due to the deficiency of Rac1 may be a likely explanation for atrophy of WATs.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Barbara Toffoli ◽  
Federica Tonon ◽  
Veronica Tisato ◽  
Giorgio Zauli ◽  
Paola Secchiero ◽  
...  

AbstractTNF-related apoptosis-inducing ligand (TRAIL) is a protein that induces apoptosis in cancer cells but not in normal ones, where its effects remain to be fully understood. Previous studies have shown that in high-fat diet (HFD)-fed mice, TRAIL treatment reduced body weight gain, insulin resistance, and inflammation. TRAIL was also able to increase skeletal muscle free fatty acid oxidation. The aim of the present work was to evaluate TRAIL actions on skeletal muscle. Our in vitro data on C2C12 cells showed that TRAIL treatment significantly increased myogenin and MyHC and other hallmarks of myogenic differentiation, which were reduced by Dr5 (TRAIL receptor) silencing. In addition, TRAIL treatment significantly increased AKT phosphorylation, which was reduced by Dr5 silencing, as well as glucose uptake (alone and in combination with insulin). Our in vivo data showed that TRAIL increased myofiber size in HFD-fed mice as well as in db/db mice. This was associated with increased myogenin and PCG1α expression. In conclusion, TRAIL/DR5 pathway promotes AKT phosphorylation, skeletal muscle differentiation, and glucose uptake. These data shed light onto a pathway that might hold therapeutic potential not only for the metabolic disturbances but also for the muscle mass loss that are associated with diabetes.


2014 ◽  
Vol 306 (9) ◽  
pp. E1046-E1054 ◽  
Author(s):  
William T. Festuccia ◽  
Pierre-Gilles Blanchard ◽  
Thiago Belchior ◽  
Patricia Chimin ◽  
Vivian A. Paschoal ◽  
...  

mTOR inhibition with rapamycin induces a diabetes-like syndrome characterized by severe glucose intolerance, hyperinsulinemia, and hypertriglyceridemia, which is due to increased hepatic glucose production as well as reduced skeletal muscle glucose uptake and adipose tissue PPARγ activity. Herein, we tested the hypothesis that pharmacological PPARγ activation attenuates the diabetes-like syndrome associated with chronic mTOR inhibition. Rats treated with the mTOR inhibitor rapamycin (2 mg·kg−1·day−1) in combination or not with the PPARγ ligand rosiglitazone (15 mg·kg−1·day−1) for 15 days were evaluated for insulin secretion, glucose, insulin, and pyruvate tolerance, skeletal muscle and adipose tissue glucose uptake, and insulin signaling. Rosiglitazone corrected fasting hyperglycemia, attenuated the glucose and insulin intolerances, and abolished the increase in fasting plasma insulin and C-peptide levels induced by rapamycin. Surprisingly, rosiglitazone markedly increased the plasma insulin and C-peptide responses to refeeding in rapamycin-treated rats. Furthermore, rosiglitazone partially attenuated rapamycin-induced gluconeogenesis, as evidenced by the improved pyruvate tolerance and reduced mRNA levels of phospho enolpyruvate carboxykinase and glucose-6-phosphatase. Rosiglitazone also restored insulin's ability to stimulate glucose uptake and its incorporation into glycogen in skeletal muscle of rapamycin-treated rats, which was associated with normalization of Akt Ser473phosphorylation. However, the rapamycin-mediated impairments of adipose tissue glucose uptake and incorporation into triacylglycerol were unaffected by rosiglitazone. Our findings indicate that PPARγ activation ameliorates some of the disturbances in glucose homeostasis and insulin action associated with chronic rapamycin treatment by reducing gluconeogenesis and insulin secretion and restoring muscle insulin signaling and glucose uptake.


Endocrinology ◽  
2011 ◽  
Vol 152 (10) ◽  
pp. 3622-3627 ◽  
Author(s):  
Sanjeev Choudhary ◽  
Sandeep Sinha ◽  
Yanhua Zhao ◽  
Srijita Banerjee ◽  
Padma Sathyanarayana ◽  
...  

Enhanced levels of nuclear factor (NF)-κB-inducing kinase (NIK), an upstream kinase in the NF-κB pathway, have been implicated in the pathogenesis of chronic inflammation in diabetes. We investigated whether increased levels of NIK could induce skeletal muscle insulin resistance. Six obese subjects with metabolic syndrome underwent skeletal muscle biopsies before and six months after gastric bypass surgery to quantitate NIK protein levels. L6 skeletal myotubes, transfected with NIK wild-type or NIK kinase-dead dominant negative plasmids, were treated with insulin alone or with adiponectin and insulin. Effects of NIK overexpression on insulin-stimulated glucose uptake were estimated using tritiated 2-deoxyglucose uptake. NF-κB activation (EMSA), phosphatidylinositol 3 (PI3) kinase activity, and phosphorylation of inhibitor κB kinase β and serine-threonine kinase (Akt) were measured. After weight loss, skeletal muscle NIK protein was significantly reduced in association with increased plasma adiponectin and enhanced AMP kinase phosphorylation and insulin sensitivity in obese subjects. Enhanced NIK expression in cultured L6 myotubes induced a dose-dependent decrease in insulin-stimulated glucose uptake. The decrease in insulin-stimulated glucose uptake was associated with a significant decrease in PI3 kinase activity and protein kinase B/Akt phosphorylation. Overexpression of NIK kinase-dead dominant negative did not affect insulin-stimulated glucose uptake. Adiponectin treatment inhibited NIK-induced NF-κB activation and restored insulin sensitivity by restoring PI3 kinase activation and subsequent Akt phosphorylation. These results indicate that NIK induces insulin resistance and further indicate that adiponectin exerts its insulin-sensitizing effect by suppressing NIK-induced skeletal muscle inflammation. These observations suggest that NIK could be an important therapeutic target for the treatment of insulin resistance associated with inflammation in obesity and type 2 diabetes.


2015 ◽  
Vol 224 (3) ◽  
pp. 303-313 ◽  
Author(s):  
Jonathan M Mudry ◽  
Julie Massart ◽  
Ferenc L M Szekeres ◽  
Anna Krook

TWIST proteins are important for development of embryonic skeletal muscle and play a role in the metabolism of tumor and white adipose tissue. The impact of TWIST on metabolism in skeletal muscle is incompletely studied. Our aim was to assess the impact of TWIST1 and TWIST2 overexpression on glucose and lipid metabolism. In intact mouse muscle, overexpression of Twist reduced total glycogen content without altering glucose uptake. Expression of TWIST1 or TWIST2 reducedPdk4mRNA, while increasing mRNA levels ofIl6,Tnfα, andIl1β. Phosphorylation of AKT was increased and protein abundance of acetyl CoA carboxylase (ACC) was decreased in skeletal muscle overexpressing TWIST1 or TWIST2. Glycogen synthesis and fatty acid oxidation remained stable in C2C12 cells overexpressing TWIST1 or TWIST2. Finally, skeletal muscle mRNA levels remain unaltered inob/obmice, type 2 diabetic patients, or in healthy subjects before and after 3 months of exercise training. Collectively, our results indicate that TWIST1 and TWIST2 are expressed in skeletal muscle. Overexpression of these proteins impacts proteins in metabolic pathways and mRNA level of cytokines. However, skeletal muscle levels of TWIST transcripts are unaltered in metabolic diseases.


2008 ◽  
Vol 100 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Sarah Dutton ◽  
Paul Trayhurn

Angiopoietin-like protein 4 (Angptl4)/FIAF (fasting-induced adipose factor) was first identified as a target for PPAR and to be strongly induced in white adipose tissue (WAT) by fasting. Here we have examined the regulation of the expression and release of this adipokine in mouse WAT and in 3T3-L1 adipocytes. Angptl4/FIAF expression was measured by RT-PCR and real-time PCR; plasma Angptl4/FIAF and release of the protein in cell culture was determined by western blotting. The Angptl4/FIAF gene was expressed in each of the major WAT depots of mice, the mRNA level in WAT being similar to the liver and much higher (>50-fold) than skeletal muscle. Fasting mice (18 h) resulted in a substantial increase in Angptl4/FIAF mRNA in liver and muscle (9·5- and 21-fold, respectively); however, there was no effect of fasting on Angptl4/FIAF mRNA in WAT and the plasma level of Angptl4/FIAF was unchanged. The Angptl4/FIAF gene was expressed in 3T3-L1 adipocytes before and after differentiation, the level increasing post-differentiation; Angptl4/FIAF was released into the culture medium. Insulin, leptin, dexamethasone, noradrenaline, TNFα and several IL (IL-1β, IL-6, IL-10, IL-18) had little effect on Angptl4/FIAF mRNA levels in 3T3-L1 adipocytes. However, a major stimulation of Angptl4/FIAF expression was observed with rosiglitazone and the inflammatory prostaglandins PGD2 and PGJ2. Angptl4/FIAF does not act as an adipose tissue signal of nutritional status, but is markedly induced by fasting in liver and skeletal muscle.


1992 ◽  
Vol 263 (5) ◽  
pp. E850-E855 ◽  
Author(s):  
L. Simonsen ◽  
J. Bulow ◽  
J. Madsen ◽  
N. J. Christensen

Whole body energy expenditure, thermogenic and metabolic changes in the forearm, and intercellular glucose concentrations in subcutaneous adipose tissue on the abdomen determined by microdialysis were measured during epinephrine infusion in healthy subjects. After a control period, epinephrine was infused at rates of 0.2 and 0.4 nmol.kg-1 x min-1. Whole body resting energy expenditure was 4.36 +/- 0.56 (SD) kJ/min. Energy expenditure increased to 5.14 +/- 0.74 and 5.46 +/- 0.79 kJ/min, respectively (P < 0.001), during the epinephrine infusions. Respiratory exchange ratio was 0.80 +/- 0.04 in the resting state and did not change. Local forearm oxygen uptake was 3.9 +/- 1.3 mumol.100 g-1 x min-1 in the basal period. During epinephrine infusion, it increased to 5.8 +/- 2.1 (P < 0.03) and 7.5 +/- 2.3 mumol.100 g-1 x min-1 (P < 0.001). Local forearm glucose uptake was 0.160 +/- 0.105 mumol.100 g-1 x min-1 and increased to 0.586 +/- 0.445 and 0.760 +/- 0.534 mumol.100 g-1 x min-1 (P < 0.025). The intercellular glucose concentration in the subcutaneous adipose tissue on the abdomen was equal to the arterial concentration in the basal period but did not increase as much during infusion of epinephrine, indicating glucose uptake in adipose tissue in this condition. If it is assumed that forearm skeletal muscle is representative for the average skeletal muscle, it can be calculated that on average 40% of the enhanced whole body oxygen uptake induced by infusion of epinephrine is taking place in skeletal muscle. It is proposed that adipose tissue may contribute to epinephrine-induced thermogenesis.


2019 ◽  
Vol 133 (21) ◽  
pp. 2189-2202
Author(s):  
Jian Wang ◽  
Ying Wang ◽  
Limei Liu ◽  
Kabirullah Lutfy ◽  
Theodore C. Friedman ◽  
...  

Abstract Excessive glucocorticoid (GC) production in adipose tissue promotes the development of visceral obesity and metabolic syndrome (MS). 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is critical for controlling intracellular GC production, and this process is tightly regulated by hexose-6-phosphate dehydrogenase (H6PDH). To better understand the integrated molecular physiological effects of adipose H6PDH, we created a tissue-specific knockout of the H6PDH gene mouse model in adipocytes (adipocyte-specific conditional knockout of H6PDH (H6PDHAcKO) mice). H6PDHAcKO mice exhibited almost complete absence of H6PDH expression and decreased intra-adipose corticosterone production with a reduction in 11β-HSD1 activity in adipose tissue. These mice also had decreased abdominal fat mass, which was paralleled by decreased adipose lipogenic acetyl-CoA carboxylase (ACC) and ATP-citrate lyase (ACL) gene expression and reduction in their transcription factor C/EBPα mRNA levels. Moreover, H6PDHAcKO mice also had reduced fasting blood glucose levels, increased glucose tolerance, and increased insulin sensitivity. In addition, plasma free fatty acid (FFA) levels were decreased with a concomitant decrease in the expression of lipase adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) in adipose tissue. These results indicate that inactivation of adipocyte H6PDH expression is sufficient to cause intra-adipose GC inactivation that leads to a favorable pattern of metabolic phenotypes. These data suggest that H6PDHAcKO mice may provide a good model for studying the potential contributions of fat-specific H6PDH inhibition to improve the metabolic phenotype in vivo. Our study suggests that suppression or inactivation of H6PDH expression in adipocytes could be an effective intervention for treating obesity and diabetes.


2014 ◽  
Vol 92 (3) ◽  
pp. 226-234 ◽  
Author(s):  
Rani Watts ◽  
Mostafa Ghozlan ◽  
Curtis C. Hughey ◽  
Virginia L. Johnsen ◽  
Jane Shearer ◽  
...  

Although myostatin functions primarily as a negative regulator of skeletal muscle growth and development, accumulating biological and epidemiological evidence indicates an important contributing role in liver disease. In this study, we demonstrate that myostatin suppresses the proliferation of mouse Hepa-1c1c7 murine-derived liver cells (50%; p < 0.001) in part by reducing the expression of the cyclins and cyclin-dependent kinases that elicit G1-S phase transition of the cell cycle (p < 0.001). Furthermore, real-time PCR-based quantification of the long noncoding RNA metastasis associated lung adenocarcinoma transcript 1 (Malat1), recently identified as a myostatin-responsive transcript in skeletal muscle, revealed a significant downregulation (25% and 50%, respectively; p < 0.05) in the livers of myostatin-treated mice and liver cells. The importance of Malat1 in liver cell proliferation was confirmed via arrested liver cell proliferation (p < 0.05) in response to partial Malat1 siRNA-mediated knockdown. Myostatin also significantly blunted insulin-stimulated glucose uptake and Akt phosphorylation in liver cells while increasing the phosphorylation of myristoylated alanine-rich C-kinase substrate (MARCKS), a protein that is essential for cancer cell proliferation and insulin-stimulated glucose transport. Together, these findings reveal a plausible mechanism by which circulating myostatin contributes to the diminished regenerative capacity of the liver and diseases characterized by liver insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document