scholarly journals Gold-Polymer Nanocomposites for Future Therapeutic and Tissue Engineering Applications

Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 70
Author(s):  
Panangattukara Prabhakaran Praveen Kumar ◽  
Dong-Kwon Lim

Gold nanoparticles (AuNPs) have been extensively investigated for their use in various biomedical applications. Owing to their biocompatibility, simple surface modifications, and electrical and unique optical properties, AuNPs are considered promising nanomaterials for use in in vitro disease diagnosis, in vivo imaging, drug delivery, and tissue engineering applications. The functionality of AuNPs may be further expanded by producing hybrid nanocomposites with polymers that provide additional functions, responsiveness, and improved biocompatibility. Polymers may deliver large quantities of drugs or genes in therapeutic applications. A polymer alters the surface charges of AuNPs to improve or modulate cellular uptake efficiency and their biodistribution in the body. Furthermore, designing the functionality of nanocomposites to respond to an endo- or exogenous stimulus, such as pH, enzymes, or light, may facilitate the development of novel therapeutic applications. In this review, we focus on the recent progress in the use of AuNPs and Au-polymer nanocomposites in therapeutic applications such as drug or gene delivery, photothermal therapy, and tissue engineering.

2021 ◽  
Vol 8 (3) ◽  
pp. 39
Author(s):  
Britani N. Blackstone ◽  
Summer C. Gallentine ◽  
Heather M. Powell

Collagen is a key component of the extracellular matrix (ECM) in organs and tissues throughout the body and is used for many tissue engineering applications. Electrospinning of collagen can produce scaffolds in a wide variety of shapes, fiber diameters and porosities to match that of the native ECM. This systematic review aims to pool data from available manuscripts on electrospun collagen and tissue engineering to provide insight into the connection between source material, solvent, crosslinking method and functional outcomes. D-banding was most often observed in electrospun collagen formed using collagen type I isolated from calfskin, often isolated within the laboratory, with short solution solubilization times. All physical and chemical methods of crosslinking utilized imparted resistance to degradation and increased strength. Cytotoxicity was observed at high concentrations of crosslinking agents and when abbreviated rinsing protocols were utilized. Collagen and collagen-based scaffolds were capable of forming engineered tissues in vitro and in vivo with high similarity to the native structures.


Author(s):  
Kivilcim Buyukhatipoglu ◽  
Robert Chang ◽  
Wei Sun ◽  
Alisa Morss Clyne

Tissue engineering may require precise patterning of cells and bioactive components to recreate the complex, 3D architecture of native tissue. However, it is difficult to image and track cells and bioactive factors once they are incorporated into the tissue engineered construct. These bioactive factors and cells may also need to be moved during tissue growth in vitro or after implantation in vivo to achieve the desired tissue properties, or they may need to be removed entirely prior to implantation for biosafety concerns.


2015 ◽  
Vol 3 (5) ◽  
pp. 859-870 ◽  
Author(s):  
Linhao Li ◽  
Yuna Qian ◽  
Chongwen Lin ◽  
Haibin Li ◽  
Chao Jiang ◽  
...  

Silk middle gland extracted sericin protein based electrospun nanofibrous scaffolds with excellent biocompatibility have been developed for tissue engineering applications.


Author(s):  
Sophia M Mavris ◽  
Laura M Hansen

Abstract The field of tissue engineering has been continuously evolving since its inception over three decades ago with numerous new advancements in biomaterials and cell sources and widening applications to most tissues in the body. Despite the substantial promise and great opportunities for the advancement of current medical therapies and procedures, the field has yet to capture wide clinical translation due to some remaining challenges, including oxygen availability within constructs, both in vitro and in vivo. While this insufficiency of nutrients, specifically oxygen, is a limitation within the current frameworks of this field, the literature shows promise in new technological advances to efficiently provide adequate delivery of nutrients to cells. This review attempts to capture the most recent advances in the field of oxygen transport in hydrogel-based tissue engineering, including a comparison of current research as it pertains to the modeling, sensing, and optimization of oxygen within hydrogel constructs as well as new technological innovations to overcome traditional diffusion-based limitations. The application of these findings can further the advancement and development of better hydrogel-based tissue engineered constructs for future clinical translation and adoption.


2010 ◽  
Vol 16 (1) ◽  
pp. 343-353 ◽  
Author(s):  
João T. Oliveira ◽  
Tírcia C. Santos ◽  
Luís Martins ◽  
Ricardo Picciochi ◽  
Alexandra P. Marques ◽  
...  

2013 ◽  
Vol 113 ◽  
pp. 25-29 ◽  
Author(s):  
Nurul Syuhada Ibrahim ◽  
Genasan Krishnamurithy ◽  
Hanumantha Rao Balaji Raghavendran ◽  
Subramaniam Puvaneswary ◽  
Ng Wuey Min ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 905 ◽  
Author(s):  
Francesca Donnaloja ◽  
Emanuela Jacchetti ◽  
Monica Soncini ◽  
Manuela T. Raimondi

Bone tissue is the structural component of the body, which allows locomotion, protects vital internal organs, and provides the maintenance of mineral homeostasis. Several bone-related pathologies generate critical-size bone defects that our organism is not able to heal spontaneously and require a therapeutic action. Conventional therapies span from pharmacological to interventional methodologies, all of them characterized by several drawbacks. To circumvent these effects, tissue engineering and regenerative medicine are innovative and promising approaches that exploit the capability of bone progenitors, especially mesenchymal stem cells, to differentiate into functional bone cells. So far, several materials have been tested in order to guarantee the specific requirements for bone tissue regeneration, ranging from the material biocompatibility to the ideal 3D bone-like architectural structure. In this review, we analyse the state-of-the-art of the most widespread polymeric scaffold materials and their application in in vitro and in vivo models, in order to evaluate their usability in the field of bone tissue engineering. Here, we will present several adopted strategies in scaffold production, from the different combination of materials, to chemical factor inclusion, embedding of cells, and manufacturing technology improvement.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohan Prasath Mani ◽  
Madeeha Sadia ◽  
Saravana Kumar Jaganathan ◽  
Ahmad Zahran Khudzari ◽  
Eko Supriyanto ◽  
...  

Abstract In tissue engineering, 3D printing is an important tool that uses biocompatible materials, cells, and supporting components to fabricate complex 3D printed constructs. This review focuses on the cytocompatibility characteristics of 3D printed constructs, made from different synthetic and natural materials. From the overview of this article, inkjet and extrusion-based 3D printing are widely used methods for fabricating 3D printed scaffolds for tissue engineering. This review highlights that scaffold prepared by both inkjet and extrusion-based 3D printing techniques showed significant impact on cell adherence, proliferation, and differentiation as evidenced by in vitro and in vivo studies. 3D printed constructs with growth factors (FGF-2, TGF-β1, or FGF-2/TGF-β1) enhance extracellular matrix (ECM), collagen I content, and high glycosaminoglycan (GAG) content for cell growth and bone formation. Similarly, the utilization of 3D printing in other tissue engineering applications cannot be belittled. In conclusion, it would be interesting to combine different 3D printing techniques to fabricate future 3D printed constructs for several tissue engineering applications.


Materials ◽  
2014 ◽  
Vol 7 (3) ◽  
pp. 1957-1974 ◽  
Author(s):  
Ulrike Rottensteiner ◽  
Bapi Sarker ◽  
Dominik Heusinger ◽  
Diana Dafinova ◽  
Subha Rath ◽  
...  

2016 ◽  
Vol 30 ◽  
pp. 188-198 ◽  
Author(s):  
Yu Zhang ◽  
Filippo Rossi ◽  
Simonetta Papa ◽  
Martina Bruna Violatto ◽  
Paolo Bigini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document