Morphological and molecular based identification of Antifungal bacillus licheniformis

2017 ◽  
Vol 17 (1) ◽  
pp. 31-35
Author(s):  
B Oyuntogtokh ◽  
M Byambasuren

At present, plant diseases caused by soil borne plant pathogens have major constraints on crop production. Which include genera Fusarium spp, Phytophtora spp, Sclerotinia and Altenaria. Due to this reason, chemical fungicides are routinely used to control plant disease, which is also true in Mongolian case. However, use of these chemicals has caused various problems including environmental pollution with consequence of toxicity to human health also resistance of some pathogens to these fungicides are present. Fortunately, an alternative method to reduce the effect of these plant pathogens is the use of antagonist microorganisms. Therefore, some species of the genus Bacillus are recognized as one of the most effective biological control agent.Our research was focused to isolate Bacillus licheniformis, with antifungal potential, from indigenous sources. In the current study, 28 bacterial cultures were isolated from soil and fermented mare’s milk also named as koumiss. Isolated bacterial cultures were identified according to simplified key for the tentative identification of typical strain of Bacillus species. As a result 8 strains were positive and further screened for antifungal activity against Fusarium spp and Alternaria solani. Out of these 8 strains 5 strains are selected based on their high effectiveness against fungal pathogens and for further confirmation Polymerase Chain reaction run for effective bacterial strains using specific primers B.Lich-f and B.Lich-r. 

BioTechniques ◽  
2020 ◽  
Vol 69 (6) ◽  
pp. 469-477
Author(s):  
Yen-Wen Kuo ◽  
Bryce W Falk

Plant diseases caused by a variety of pathogens can have severe effects on crop plants and even plants in natural ecosystems. Despite many effective conventional approaches to control plant diseases, new, efficacious, environmentally sound and cost-effective approaches are needed, particularly with our increasing human population and the effects on crop production and plant health caused by climate change. RNA interference (RNAi) is a gene regulation and antiviral response mechanism in eukaryotes; transgenic and non transgenic plant-based RNAi approaches have shown great effectiveness and potential to target specific plant pathogens and help control plant diseases, especially when no alternatives are available. Here we discuss ways in which RNAi has been used against different plant pathogens, and some new potential applications for plant disease control.


2007 ◽  
Vol 53 (7) ◽  
pp. 901-911 ◽  
Author(s):  
Rajesh Ramarathnam ◽  
Shen Bo ◽  
Yu Chen ◽  
W.G. Dilantha Fernando ◽  
Gao Xuewen ◽  
...  

Bacillus species are well known for their ability to control plant diseases through various mechanisms, including the production of secondary metabolites. Bacillus subtilis DFH08, an antagonist of Fusarium graminearum , and other Bacillus spp. that are antagonists of common fungal pathogens of canola were screened for peptide synthetase biosynthetic genes of fengycin and bacillomycin D. Specific polymerase chain reaction (PCR) primers identified B. subtilis strains DFH08 and 49 for the presence of the fenD gene of the fengycin operon. Bacillus cereus DFE4, Bacillus amyloliquefaciens strains DFE16 and BS6, and B. subtilis 49 were identified for the presence of the bamC gene of the bacillomycin D synthetase biosynthetic operon. Both fengycin and bacillomycin D were detected in the culture extract of strain Bs49, characterized through MALDI–TOF–MS (matrix-assisted laser desorption ionization – time of flight – mass spectrometry), and their antifungal activities demonstrated against F. graminearum and Sclerotinia sclerotiorum . This study designed and used specific PCR primers for the detection of potential fengycin- and bacillomycin D-producing bacterial antagonists and confirmed the molecular detection with the biochemical detection of the corresponding antibiotic produced. This is also the first report of a B. cereus strain (DFE4) to have bacillomycin D biosynthetic genes. Bacteria that synthesize these lipopeptides could act as natural genetic sources for genetic engineering of the peptide synthetases for production of novel peptides.


Author(s):  
Donald M. Gardiner ◽  
Anca Rusu ◽  
Luke Barrett ◽  
Gavin C. Hunter ◽  
Kemal Kazan

SummaryGlobally, fungal pathogens cause enormous crop losses and current control practices are not always effective, economical or environmentally sustainable. Tools enabling genetic management of wild pathogen populations could potentially solve many problems associated with plant diseases.A natural gene drive from a heterologous species can be used in the globally important cereal pathogen, Fusarium graminearum, to remove pathogenic traits from contained populations of the fungus. The gene drive element became fixed in a freely crossing populations in only three generations.Repeat induce point mutation, a natural genome defence mechanism in fungi, may be useful to recall the gene drive following release, should a failsafe mechanism be required.We propose that gene drive technology is a potential tool to control plant pathogens.


2018 ◽  
Vol 16 (2) ◽  
pp. 385-392
Author(s):  
Pham Thi Thuy Hoai ◽  
Ton That Huu Dat ◽  
Tran Thi Hong ◽  
Nguyen Thi Kim Cuc ◽  
Tran Dinh Man ◽  
...  

The pathogenic fungi often cause huge impacts on agricultural crops, and occupy over 80% of plant diseases. Fusarium oxysporum and Rhizoctonia solani are fungal pathogens that can lead to rapid development of plant diseases on important crops in Tay Nguyen (e.g., pepper, coffee, rubber, cashew). Therefore, the study of microorganisms with bioactivity against these pathogens is essential to control plant diseases. In this study, we isolated microorganisms from rhizospheres of pepper in Tay Nguyen and screened beneficial microbes against two pathogenic fungi using agar well diffusion assay. Obtained results showed that there are different about isolated microbial density between samples collected from diseased and healthy pepper. The bacterial population is higher in rhizosphere region of healthy pepper than in those of diseased plants. In contrast, fungal density is lower in rhizosphere region of healthy plants than in those of diseased ones. From isolation plates, we selected and purified 391 strains including 236 bacteria, 149 actinomycetes and 6 fungi for screening antifungal activity. Out of isolated microorganisms, 44 strains (36 bacteria, 6 actinomycetes, and 2 fungi) showed antagonistic activity against at least one of two pathogens (F. oxysporum and R. solani), of which 15 isolates showed activity against both fungi. Identification of isolates with highest activity using the 16S rRNA gene sequences showed bacterial strains belonged to different species Enterobacter ludwigii, Pseudomonas fulva, Bacillus subtilis, whereas 2 actinomycetes belonged to the genus Streptomyces: Streptomyces sp. and Streptomyces diastatochromogenes. Identification of the isolated fungus based on morphological characteristics and the 18S rRNA gene sequence revealed that this strain belonged to species Penicillium oxalicum. Our study revealed the potential of the indigenous microorganisms in preventing and controlling plant-pathogenic fungi.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Michelle S. M. Li ◽  
David A. Piccoli ◽  
Tim McDowell ◽  
Jacqueline MacDonald ◽  
Justin Renaud ◽  
...  

Abstract Background Microorganisms, including Bacillus species are used to help control plant pathogens, thereby reducing reliance on synthetic pesticides in agriculture. Bacillus velezensis strain 1B-23 has been shown to reduce symptoms of bacterial disease caused by Clavibacter michiganensis subsp. michiganensis in greenhouse-grown tomatoes, with in vitro studies implicating the lipopeptide surfactin as a key antimicrobial. While surfactin is known to be effective against many bacterial pathogens, it is inhibitory to a smaller proportion of fungi which nonetheless cause the majority of crop diseases. In addition, knowledge of optimal conditions for surfactin production in B. velezensis is lacking. Results Here, B. velezensis 1B-23 was shown to inhibit in vitro growth of 10 fungal strains including Candida albicans, Cochliobolus carbonum, Cryptococcus neoformans, Cylindrocarpon destructans Fusarium oxysporum, Fusarium solani, Monilinia fructicola, and Rhizoctonia solani, as well as two strains of C. michiganensis michiganensis. Three of the fungal strains (C. carbonum, C. neoformans, and M. fructicola) and the bacterial strains were also inhibited by purified surfactin (surfactin C, or [Leu7] surfactin C15) from B. velezensis 1B-23. Optimal surfactin production occurred in vitro at a relatively low temperature (16 °C) and a slightly acidic pH of 6.0. In addition to surfactin, B. velenzensis also produced macrolactins, cyclic dipeptides and minor amounts of iturins which could be responsible for the bioactivity against fungal strains which were not inhibited by purified surfactin C. Conclusions Our study indicates that B. velezensis 1B-23 has potential as a biocontrol agent against both bacterial and fungal pathogens, and may be particularly useful in slightly acidic soils of cooler climates.


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 60
Author(s):  
Vincenzo Michele Sellitto ◽  
Severino Zara ◽  
Fabio Fracchetti ◽  
Vittorio Capozzi ◽  
Tiziana Nardi

From a ‘farm to fork’ perspective, there are several phases in the production chain of fruits and vegetables in which undesired microbial contaminations can attack foodstuff. In managing these diseases, harvest is a crucial point for shifting the intervention criteria. While in preharvest, pest management consists of tailored agricultural practices, in postharvest, the contaminations are treated using specific (bio)technological approaches (physical, chemical, biological). Some issues connect the ‘pre’ and ‘post’, aligning some problems and possible solution. The colonisation of undesired microorganisms in preharvest can affect the postharvest quality, influencing crop production, yield and storage. Postharvest practices can ‘amplify’ the contamination, favouring microbial spread and provoking injures of the product, which can sustain microbial growth. In this context, microbial biocontrol is a biological strategy receiving increasing interest as sustainable innovation. Microbial-based biotools can find application both to control plant diseases and to reduce contaminations on the product, and therefore, can be considered biocontrol solutions in preharvest or in postharvest. Numerous microbial antagonists (fungi, yeasts and bacteria) can be used in the field and during storage, as reported by laboratory and industrial-scale studies. This review aims to examine the main microbial-based tools potentially representing sustainable bioprotective biotechnologies, focusing on the biotools that overtake the boundaries between pre- and postharvest applications protecting quality against microbial decay.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 114
Author(s):  
Armina Morkeliūnė ◽  
Neringa Rasiukevičiūtė ◽  
Lina Šernaitė ◽  
Alma Valiuškaitė

The Colletotrichum spp. is a significant strawberry pathogen causing yield losses of up to 50%. The most common method to control plant diseases is through the use of chemical fungicides. The findings of plants antimicrobial activities, low toxicity, and biodegradability of essential oils (EO), make them suitable for biological protection against fungal pathogens. The aim is to evaluate the inhibition of Colletotrichum acutatum by thyme, sage, and peppermint EO in vitro on detached strawberry leaves and determine EO chemical composition. Our results revealed that the dominant compound of thyme was thymol 41.35%, peppermint: menthone 44.56%, sage: α,β-thujone 34.45%, and camphor: 20.46%. Thyme EO inhibited C. acutatum completely above 200 μL L−1 concentration in vitro. Peppermint and sage EO reduced mycelial growth of C. acutatum. In addition, in vitro, results are promising for biological control. The detached strawberry leaves experiments showed that disease reduction 4 days after inoculation was 15.8% at 1000 μL L−1 of peppermint EO and 5.3% at 800 μL L−1 of thyme compared with control. Our findings could potentially help to manage C. acutatum; however, the detached strawberry leaves assay showed that EO efficacy was relatively low on tested concentrations and should be increased.


2021 ◽  
Vol 10 (15) ◽  
pp. e296101522465
Author(s):  
Erika Valente de Medeiros ◽  
Lucas Figueira da Silva ◽  
Jenifer Sthephanie Araújo da Silva ◽  
Diogo Paes da Costa ◽  
Carlos Alberto Fragoso de Souza ◽  
...  

A better understanding of the use of biochar with Trichoderma spp. (TRI), considered the most studied tool for biological control, would increase our ability to set priorities. However, no studies exist using the two inputs on plant disease management. Here, we hypothesized that biochar and TRI would be used for the management of soilborne plant pathogens, mainly due to changes in soil properties and its interactions. To test this hypothesis, this review assesses papers that used biochar and TRI against plant diseases and we summarize the handling mechanisms for each input. Biochar acts by mechanisms: induction to plant resistance, sorption of allelopathic and fungitoxic compounds, increase of beneficial microorganisms, changes the soil properties that promote health and nutrient availability. Trichoderma as biocontrol agents by different mechanisms: mycoparasitism, enzyme and secondary metabolic production, plant promoter agent, natural decomposition agent, and biological agent of bioremediation. Overall, our findings expand our knowledge about the reuse of wastes transformed in biochar combined with Trichoderma has potential perspective to formulate products as alternative management tool of plant disease caused by soilborne fungal pathogen and add important information that can be suitable for development of strategy for use in the global health concept.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 882
Author(s):  
Shachar Jerushalmi ◽  
Marcel Maymon ◽  
Aviv Dombrovsky ◽  
Stanley Freeman

The use of and research on medical cannabis (MC) is becoming more common, yet there are still many challenges regarding plant diseases of this crop. For example, there is a lack of formal and professional knowledge regarding fungi that infect MC plants, and practical and effective methods for managing the casual agents of disease are limited. The purpose of this study was to identify foliar, stem, and soilborne pathogens affecting MC under commercial cultivation in Israel. The predominant major foliage pathogens were identified as Alternaria alternata and Botrytis cinerea, while the common stem and soilborne pathogens were identified as Fusarium oxysporum and F. solani. Other important fungi that were isolated from foliage were those producing various mycotoxins that can directly harm patients, such as Aspergillus spp. and Penicillium spp. The sampling and characterization of potential pathogenic fungi were conducted from infected MC plant parts that exhibited various disease symptoms. Koch postulates were conducted by inoculating healthy MC tissues and intact plants with fungi isolated from infected commercially cultivated symptomatic plants. In this study, we report on the major and most common plant pathogens of MC found in Israel, and determine the seasonal outbreak of each fungus.


2005 ◽  
Vol 82 (3) ◽  
pp. 85-102 ◽  
Author(s):  
C.L. Doumbou ◽  
M.K. Hamby Salove ◽  
D.L. Crawford ◽  
C. Beaulieu

Actinomycetes represent a high proportion of the soil microbial biomass and have the capacity to produce a wide variety of antibiotics and of extracellular enzymes. Several strains of actinomycetes have been found to protect plants against plant diseases. This review focuses on the potential of actinomycetes as (a) source of agroactive compounds, (b) plant growth promoting organisms, and (c) biocontrol tools of plant diseases. This review also addresses examples of biological control of fungal and bacterial plant pathogens by actinomycetes species which have already reached the market or are likely to be exploited commercially within the next few years.


Sign in / Sign up

Export Citation Format

Share Document